

Astro-H The Potential of Future X-ray **Missions**

Gravity and Extreme Magnetism SMEX

Randall Smith Smithsonian Astrophysical Observatory

...with huge assistance from the IXO, Astro-H and GEMS teams...

The Big Questions

- How do disks transfer angular momentum to deliver gas onto compact objects?
- How do accretion disks launch winds and jets?

– From the "Fundamental Accretion and Ejection Astrophysics" Astro2010 White Paper, Miller et al.

The Big Questions

- How do disks transfer angular momentum to deliver gas onto compact objects?
- How do accretion disks launch winds and jets?
- What recommendations will the Astro2010 panel make?

Mostly from the "Fundamental Accretion and Ejection Astrophysics" Astro2010 White Paper, Miller et al.

The Accretion Continuum

- 1. Protostars (CTTS)
- 2. White Dwarfs
- 3. X-ray Binaries (w/ Neutron Stars)
- 4. Black Hole Candidates
- 5. Active Galactic Nuclei

Spectra are the Key

Spectra are the Key

RSTRO-H

Astro-H

New Picture of Accretion

TW Hya with Astro-H

Note improved Mg XI spectrum...

The Accretion Continuum

- 1. Protostars (CTTS)
- 2. White Dwarfs
- 3. X-ray Binaries (w/ Neutron Stars)
- 4. Black Hole Candidates
- 5. Active Galactic Nuclei

WDs

Astro-H

Type Ia Progenitors

- "A clearer understanding SNIa progenitors can help address the significant (±0.6 mag in V) scatter in the raw peak absolute magnitudes of SNIa. ...future use of SNIa for precision cosmology...requires that we further reduce any systematic effects.
 " (Mukai et al. 2010)
- Must find Massive White Dwarf binary systems.

WDs Finding Massive White Dwarfs

Astro-H

WDs Finding Massive White Dwarfs

Hard X-ray bright non-magnetic white dwarfs may be the key – easy to find with hard X-ray surveys, and the redshift is...

Astro-H

WDs Finding Massive White Dwarfs

Detectable with IXO – Measurement of 1.35 (+0.03,-0.06) Msun

Astro-H

The Accretion Continuum

- 1. Protostars (CTTS)
- 2. White Dwarfs
- 3. X-ray Binaries (w/ Neutron Stars)
- 4. Black Hole Candidates
- 5. Active Galactic Nuclei

It's Hard to be Bright

- XRB exhibit a **wide** range of luminosities
- A limitation has been the difficulty of doing both timing and spectral studies simultaneously, due to lack of instrumental range.
 - Reverberation Mapping
 - QPOs matched to iron lines

Power-law continuum varies first, followed by reflection thermally-reprocessed emission

Path-length difference defines *intrinsic lag*. Observed lag is the intrinsic lag diluted by the ratio of continuum to reverberating emission Courtesy P. Uttley

Reverberations

The delayed response of the reprocessed disk line relative to the QPO variations sets the characteristic 'size' of ⁽ⁱ⁾ the system. Shown here is the lagⁱⁿ =18 km vs energy for different $R_{in}=12 \text{ km}$ inner disc radii for a neutron star KHz 2 8 10 6 QPO observed with Energy (keV) IXO. Courtesy P. Uttley

Linking QPOs and lines

Measuring the Keplerian frequency and radius yields M_{NS} and constrains Red by the HTRS **Power spectra** 3.0 1.20 IXO-HTRS-Rin=7 GM/c²-1248 Hz $R_{in}=7GM/c^2-1248$ Hz 2.8 $R_{in} = 12GM/c^2 - 560$ Hz 2.6 1.15 Power 2.4 2.2 1.10 2.0 Ratio 1.8 1.05 IXO-HTRS-Rin=12 GM/c²-560 Hz 6 Power 5 1.00 3 0.95 10 200 400 600 800 1000 1200 1400 Energy (keV) Frequency (Hz) $\underline{R_{in}}$ 32.2 $\frac{02.2}{(\nu_{\rm K}/1000 \text{ Hz})}$ $M_{NS} =$ ${
m M}_{\odot}$

The Accretion Continuum

- 1. Protostars (CTTS)
- 2. White Dwarfs
- 3. X-ray Binaries (w/ Neutron Stars)
- 4. Black Hole Candidates
- 5. Active Galactic Nuclei

BHCs

Accelerating Winds

Magnetically-driven

Dense, clumpy winds, with significant rotation as they originate near the BH

Radiative-driven

Smooth less dense winds that primarily show outflow velocity.

^{BHCs} GRO J1655-40

Photoionization models require densities 10³x and distances less than 1/10th of what radiative and thermal scenarios predict; magnetic models can fit the results, albeit not perfectly.

BHCs

BHC - GROJ1655

IXO – the game changer

BHCs 100.0 L/ Se 10

Polarization observations can accurately determine the spin/mass (a/M) ratio for a typical Galactic BH binary. A 100 ksec XPOL observation will make energy-resolved measurements each sensitive to ~0.5% (3σ), easily separating these models.

esa Jaka

NASA

GEMS observations constrain black hole spin

- A GEMS observation of a stellar mass black hole in the thermal state can measure expected dependences on angular momentum
- Short observations (30 ksec) will be capable of detecting 1% polarization in 2-4 keV and 4-8 keV bands
- In the case of hard state black holes, GEMS will be able to test for the combined effects of spin and coronal geometry

The Accretion Continuum

- 1. Protostars (CTTS)
- 2. White Dwarfs
- 3. X-ray Binaries (w/ Neutron Stars)
- 4. Black Hole Candidates
- 5. Active Galactic Nuclei

International X-ray Observatory [XO]

Strong Gravity Seen in Disks with

AGN

High velocity outflows

Conclusions

- The approved missions Astro-H and GEMS will open up the high-resolution Fe K and X-ray polarization studies, respectively.
- IXO will entirely revolutionize the field
 - Sources we study today with grating spectra will have *time-resolved* grating spectra
 - Will have 3 ORDERS OF MAGNITUDE more "area x resolution" product than currently available.

X-ray and Planetary Disks How do X-rays influence planet formation in protoplanetary disks? YLW 16A: protostar in Oph

Chandra YLW 16A superflare, 1.2 days Imanishi et al. 2001

