## Constellation-X Mirror Development: Achievements, Problems, and Prospects

### Will Zhang

### Laboratory for X-Ray Astrophysics NASA Goddard Space Flight Center

# **Mirror Development Team**

**MSFC:** 

David Content Bill Jones John Lehan **Rob** Petre Timo Saha Will Zhang

Mikhail Gubarev Steve O'Dell SAO: Paul Reid

#### **Technology Development** Manager:

Scott Owens

Laboratory Manager:

Curtis Odell

#### **Technical Support:** James Mazzarella,

Marton Sharpe, Melinda Hong, John Kearney

## Fabrication



- Start with a sheet of commercially available borosilicate glass, 0.4mm thick
- Place it on a fused quartz mandrel whose surface has been treated to prevent sticking and provide other necessary properties for slumping
- Start a temperature cycle between between 20 and 600 degrees C

# Metrology



- Mirror segment held at 3 points
- 25 axial scans for each mirror, one every 2 degrees
- Verification of the fabrication process
- Feedback to the fabrication process

#### Goal: Make every mirror look exactly like the mandrel and prove it

# **Development Strategy**

- Start with a technique that meets **three** (effective area, mass, and production cost) of the **four** requirements, work on the fourth one (**angular resolution**)
- Pursue **reproducibility**, or process determinism: making all the mirrors look alike
- Pursue **traceability**: making all the mirrors look like the mandrels

### **Apparent Surface Map**

(including both fabrication error and gravity distortion)



### **Mirror Apparent Axial Figure Error**



### **Distribution of Apparent Mirror Quality**

(all mirrors produced between Jan and Apr 2006)



#### **Repeatability: Slumping is a** *deterministic* **process**



### Necessary Conditions to Have Repeatability

- Forming has to be good
- Metrology registration has to be good
- Distortion has to be very small or nearly identical

#### Best: 21nm RMS Typical: 50nm RMS

These numbers are most likely dominated by a lack of accurate cross registration, therefore should be considered as upper limits

### **Comparison between Mandrel and Mirror**

**Black=Mirror; Blue=Mandrel** 





Will Zhang SPIE Orlando FL 29 May 2006

### **Result from a new mirror support**



## **Error Decomposition Estimate**

| Overall<br>Axial<br>Figure | 14.9      |                         |          |                 |
|----------------------------|-----------|-------------------------|----------|-----------------|
|                            | Mandrel   | 6.0                     |          |                 |
|                            | Metrology | 10.0                    |          |                 |
|                            |           | Reference<br>Optics     | 7.0      | Easy to solve   |
|                            |           | Gravity<br>Distortion   | 7.0 🗲    | Relatively easy |
|                            | Forming   | 9.2                     |          |                 |
|                            |           | Low Order<br>Figure     | 2.0      |                 |
|                            |           | Mid-Frequency<br>Figure | 8.5 🗲    | No. 1 Issue     |
|                            |           | Random Error            | 3.0 🚽    | Potential of    |
|                            |           |                         | <b>_</b> | this technology |

## **Summary of Status and Issus**

- We have achieved excellent repeatability in slumping substrates
  - Typical: 50nm RMS
  - Best: 20nm RMS
  - These mirrors, when properly integrated, are expected to perform better than 20 arcsec (HPD, 2 reflections)
- We need to address the following issues
  - Metrology
    - Use better reference optics: commission of a new 10-in interferometer
    - Construct better mirror holding fixture: mattress
  - Understand, reduce/eliminate the mid-frequency error

### Mid-frequency Problem and Its Solution

- Cause: dust from the slumping environment and detritus resulting from the release layer
- Solution:
  - Better slumping environment: clean oven
  - Improved mandrel surface release layer

# Prospects

- Almost all technological aspects of the mirror fabrication are understood and going very well:
  - Problems are well defined
  - Solutions are being implemented
- In all likelihood, we will be able to do significantly better than the SXT baseline requirements. By the end of this year we should be able to quantitatively gauge
  - whether the present technology can achieve the SXT goal of 5 arcsec
  - What specific things we need to do to reach the goal

# Acknowledgements

This work has been supported in part by

The Constellation-X Project Office GSFC Core Competence Fund A NASA Astronomy and Physics Analysis Grant GSFC Internal R&D Fund GSFC Technical Equipment Fund GSFC Director's Discretionary Fund

### **SXT Mandrel Challenge in Perspective**

|                                                              | Con-X | XMM | Chandra | JWST |
|--------------------------------------------------------------|-------|-----|---------|------|
| No. of Assy.                                                 | 4     | 3   | 1       | 1    |
| No. of Shells per<br>Assy.                                   | 216   | 58  | 4       | NA   |
| Total Mirror Area<br>(m <sup>2</sup> ) of the<br>Observatory | 883   | 158 | 19      | 36   |
| Total Mandrel Area<br>(m <sup>2</sup> )                      | 28    | 53  | 19      | 36   |

Manufacture of SXT mandrels is NOT challenging in historic terms.

• Comparable to, or easier than, XMM's mandrels because of smaller area

• Much easier than Chandra's mirrors because of much less stringent figure requirements

• Much easier than JWST mirrors because there are no lightweighting or cryogenic requirements

### **Mirror Segment Description**

$$\rho(z,\phi) = \rho_0(\phi) + z \cdot \tan\theta(\phi) - \left(\frac{2z}{L}\right)^2 \cdot s(\phi) + R(z,\phi)$$



$$\rho_0(\phi) = \rho_0 + \Delta \rho(\phi)$$
$$\theta(\phi) = \theta_0 + \Delta \theta(\phi)$$
$$s(\phi) = s_0 + \Delta s(\phi)$$

By definition/convention, all the Delta terms (azimuth dependent) have zero means. So does also the R(z,phi) term.

#### **Mirror Parameters**

| Mirror Parameter |                                                                                                       | Metrology<br>Equipment                                                  | Challenge                              | Comment                        | Status                                                                                               |
|------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------|
| Radius           | Average Radius $(\rho_0 + \Delta \rho_0)$                                                             |                                                                         | Gravity distortion<br>Mount distortion | Single number                  | Work in progress;<br>Current<br>measurements<br>unreliable due to<br>gravity and mount<br>distortion |
|                  | Radius<br>Variation<br>$(\Delta \rho(\phi))$                                                          | Cylindrical                                                             |                                        | Having<br>frequency<br>content |                                                                                                      |
| Cone<br>Angle    | Average Cone<br>Angle<br>$(\theta_0 + \Delta \theta_0)$                                               | measuring                                                               |                                        | Single number                  |                                                                                                      |
|                  | Cone Angle<br>Variation<br>$(\Delta\theta(\phi))$                                                     |                                                                         |                                        | Having<br>frequency<br>content |                                                                                                      |
| Axial<br>Figure  | Average Sag $(S_0 + \Delta S_0)$                                                                      |                                                                         | Gravity distortion<br>Mount distortion | Single number                  | Current<br>measurements<br>unreliable due to<br>gravity and mount<br>distortion                      |
|                  | Sag Variation $(\Delta S(\phi))$                                                                      |                                                                         |                                        | Having<br>frequency<br>content |                                                                                                      |
|                  | Low Frequency<br>Figure<br>(0.005 - 0.05<br>$mm^{-1})$ or<br>(200 - 20 mm<br>period)                  | Fizeau phase<br>measuring<br>interferometer,<br>as shown in<br>Figure 3 |                                        | Having<br>frequency<br>content | Current<br>measurements<br>probably affected<br>by gravity and<br>mount distortion                   |
|                  | Middle<br>Frequency<br>Figure<br>$(0.05 - 0.5 \text{ mm}^{-1}) \text{ or}$<br>(20 - 2  mm)<br>period) |                                                                         | Reference optics<br>figure error       | Having<br>frequency<br>content | Current<br>measurements<br>slightly affected<br>by mid-frequency<br>errors on<br>reference optics    |
|                  | High Frequency<br>Figure<br>$(> 0.5 \text{ mm}^{-1})$ or<br>(< 2  mm<br>period)                       | Interferometric<br>surface profiler                                     | None                                   | Having<br>frequency<br>content | Work in progress                                                                                     |

# **Application to Normal Incidence Optics**

