NASA/Goddard Space Flight Center Greenbelt, Maryland

## The X-ray Microcalorimeter Spectrometer for Constellation-X

Constellation The Constellation X-ray Mission

**Richard L. Kelley** 

NASA/Goddard Space Flight Center

## Integrated Product Team for X-Ray Microcalorimeter Instrument

#### NASA/Goddard Space Flight Center

| TES development: | Caroline Kilbourne |
|------------------|--------------------|
| Continuous ADR:  | Peter Shirron      |
| Cryocooler:      | Paul Whitehouse    |

#### National Institute of Standards & Technology

| <b>TES &amp; readout</b> | development: |
|--------------------------|--------------|
|--------------------------|--------------|

Kent Irwin

#### Harvard/Smithsonian Astrophysical Observatory

| Ge-based microcalorimeters | Eric Silver |
|----------------------------|-------------|
|                            |             |

- IPT organization structure no longer in effect as of late 2005.
  - Rick Shafer (NASA/Goddard) named as XMS Instrument Scientist to provide independent support to Project.
- Con-X and LISA Technology Assessment requested by NASA management in late 2005; I will present the XMS input to that assessment today.

### **XMS Top-Level Requirements**

| XMS Perform                                                    | nance Requirement                     | Trace to Top-Level Mission<br>Requirements                                       |  |  |
|----------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------|--|--|
| Bandpass 0.6 – 10 keV                                          |                                       | TLRD                                                                             |  |  |
| Spectral resolving power<br>(E/ <sup>Δ</sup> E)                |                                       | TLRD                                                                             |  |  |
| Angular resolution                                             | 5 arcsec                              | Oversample SXT PSF by a factor of 3                                              |  |  |
| Field of view                                                  | 2.5 arcmin                            | TLRD                                                                             |  |  |
| Derived Dete                                                   | ector Requirements                    | Derivation                                                                       |  |  |
| Pixel size                                                     | 242 μm                                | Meets TLRD beam sampling requirement                                             |  |  |
| Number of pixels                                               | 32 x 32                               | Gives 2.7 arcmin FOV vs. 2.5 arcmin requirement                                  |  |  |
| Energy resolution                                              | 4 eV at 6 keV; 2 eV at 1 keV          | Gives $E/\Delta E = 1500$ at 6 keV                                               |  |  |
| Intrinsic quantum efficiency                                   | 95%                                   | Flowdown to meet effective area req.                                             |  |  |
| Filling Factor                                                 | 95%                                   | Flowdown to meet effective area req.                                             |  |  |
| Detector speed <300 <sup>µ</sup> sec pulse decay time constant |                                       | Supports bright source counting rate req.                                        |  |  |
| Time resolution                                                | 10 <sup>µ</sup> sec                   | Allocation to meet absolute timing req.                                          |  |  |
| Derived Instru                                                 | iment Requirements                    | Derivation                                                                       |  |  |
| Mass                                                           | 147 kg                                | Current engineering estimate                                                     |  |  |
| Power (watts)                                                  | 80/146 (min/max)<br>150/200 (BOL/EOL) | For analog, digital, CADR control electronics<br>Cryocooler electronics          |  |  |
| Data rate (avg/peak)7.2/640 kbps                               |                                       | Average source rate plus 840 bps H/K data<br>Peak rate from bright sources limit |  |  |

#### **Microcalorimeters** X-Ray

- X-ray microcalorimeter: thermal detection of individual X-ray photons
  - High spectral resolution
  - $-\Delta E$  very nearly constant with E
  - High intrinsic quantum efficiency
  - Non-dispersive spectral resolution not affected by source angular size

Arrays have been developed for a sounding rocket payload and an orbiting observatory





Constellation The Constellation X-ray Mission



\*TRL9\*

#### Greatest heritage using dR/dT as the thermometer



First x-ray microcalorimeter in space - XQC Instrument





Constellation X-ray Mission

36 pixel ion-implanted Si x-ray microcalorimeter. Collaboration between Goddard and the University of Wisconsin

**Spectrum of Diffuse X-Ray Background in 5 minutes** 



## Improved Energy Resolution and Uniformity - Astro-

#### **E2**

Ion-implanted Si using Silicon-On-Insulator wafers

 ¬ Buried oxide layer provides diffusion barrier ⇒ deeper, more uniform implant profiles. No more 1/f noise.

The absorber tabs and polymer "cups" produced very controlled absorber thermal and mechanical attachment.

This led to a much higher degree of energy resolution uniformity and extremely gaussian line spread functions.







SPIE Conference, Orlando, May 29, 2006

### **X-Ray Microcalorimeter for Sub-orbital Science**

First Generation Microcalorimeter Array: New Microcalorimeter array:

- ± Designed for study of the diffuse X-ray background below ~ 1 keV
- + Pixels are  $0.5 \times 2 \text{ mm}$



- ± Design uses XRS technology
- $\pm$  2 x 2 mm pixels
- $\pm$  ~ 6 eV resolution. but has 4 times the

 $A-\Omega$ 

Array prior to attaching absorbers



Constellation The Constellation X-ray Mission





### Suzaku (Astro-E2)/XRS

New technology demonstrated in space:

- 32-channel X-ray microcalorimeter array based on ion-implanted Si with HgTe absorbers.
  - Energy resolution performance demonstrated (include. DSP electronics)
  - Low-temperature anticoincidence detector demonstrated
- Low temperature technology (adiabatic magnetic refrigerator) maintains 60 mK and < 10  $\mu$ K rms for ~ 36 hours/cycle
- Stirling-cycle cooler operates properly









#### **Energy Resolution vs. Anti-coincidence Rate**

Extrapolated energy resolution at ~ 0 BG rate is consistent with pre-launch calibrations.

> Correlation with Anti-co rate is likely due to subtrigger pulses induced by cosmic rays as they pass through the frame of the array.





#### Constellation The Constellation X-ray Mission

#### **XRS In-flight Background**





- ± Primary cosmic rays
- Secondary particles produced by cosmic rays interacting in the surrounding structure
- Events produced from direct interaction and with the inert frame around the sensors
- ± Escape electrons within array

Using anticoincidence detector combined with multi-pixel frame events, and accepting only coefficient of magnetic rigidity cut-off > 6 GeV/c, residual *in-flight* BG is:

2.7 x 10<sup>-3</sup> cps/cm<sup>2</sup>/keV (100 eV - 12 keV)



SPIE Conference, Orlando, May 29, 2000

## Constellation The Constellation X-ray Mission **Superconducting Transition Edge Thermometer** $R \sim T^{\alpha}$ , with $\alpha$ up to 100 SQUID Resistance Tbath TES Tc Temperature $P = \frac{V^2}{R}$ Extreme Electro-thermal Feedback $\frac{dP}{dT} = -\frac{V^2}{R^2} \frac{dR}{dT} \Rightarrow \text{stable}$ (Irwin, App. Phys. Lett., 1995) $\Delta E = 2.35 \xi \sqrt{kT^2C}$ where $\xi \approx 2.4/\sqrt{\alpha}$ $\Delta E \sim \sqrt{(C/\alpha)} \Rightarrow$ high resolution with higher acceptable heat capacity $\tau_{eff} \approx \tau \frac{n}{\alpha}$ where $\tau = \frac{C}{G}$ $\Rightarrow$ potentially much faster pulse response.

### **TES Optimization for High Spectral Resolution**



Constellation The Constellation X-ray Mission

### High-density arrays







Array with Bi/Cu absorbers DRIE process

0.25 mm





Constellation The Constellation X-ray Mission

#### **Read-out** concept – Multiplexed SQUID<sup>\*</sup> current amplifiers



2 x 2 array is shown as example of N-row by M-column

operation:

- each TES coupled to its own low-power input \_ SQUID operated at 50 mK
- **TESs stay on all the time**
- rows of input SQUIDs turned on and off \_ sequentially
- wait for transients to settle, sample TES signal, move on
- SQUIDs are nonlinear amplifiers, so use digital feedback to linearize
- Error signal sampled and required feedback voltage stored for next visit to that pixel
- Output from each column: interleaved data stream of pixels that is passed to processors that perform demultiplexing, triggering, and processing functions

Large scale multiplexing minimizes the number of wires and the heat loads at the cold stages



\*superconducting quantum interference device



**Row Address Lines** 

- 1 x 32 input SQUIDs per chip
- One column of 32 x 32 array
- Dissipated Power ~ 4 nW
- Less than 1 μW for 32x32 array





## Instrument Block Diagram and Conceptual Implementation for TES X-Ray Microcalorimeter Spectrometer (XMS)





Constellation The Constellation X-ray Mission

Size ~ 50 x 75 cm Mass ~ 150 kg, including electronics



#### Four XMS Modules



#### **Extended FOV - Position-Sensitive TES ("PoST")**





Thermal diffusion gives rise to different pulse responses and hence position; summing signals gives x-ray energy. "PoST" provides path to larger fields of view without significantly increasing electronics.

#### **Best PoST Resolution so far:**



SPIE Conference, Orlando, May 29, 2006

### Metallic Magnetic Calorimeter



#### Magnetic Calorimeters - Large Investigation Team

Magnetic calorimeters are currently *not* being funded by Con-X project, but have demonstrated great potential:

Constellation The Constellation X-ray Mission

High spectral resolution

Amenable to large array fabrication

Uses SQUID technology being developed for TES arrays

Large "consortium" at work:

Brown University University of Heidelberg, Germany IPHT, Jena, Germany PTB, Berlin, Germany SAO Goddard NIST

#### State of the art for ion-implanted Si w/HgTe absorber

- ¬ Lower temperature  $\Rightarrow$  e.g., 50 mK
- $\neg$  Lower heat capacity  $\Rightarrow$  smaller absorbers

Obtained **3.8 eV FWHM at 6 keV** with XRSsized pixels operated at 50 mK (625  $\mu$ m x 625  $\mu$ m x 8.8  $\mu$ m HgTe absorber.)

Obtained **3.2 eV FWHM at 6 keV** at 50 mK with 408  $\mu$ m x 408  $\mu$ m x 8.8  $\mu$ m HgTe absorber.

Modeling predicts 2.5 eV; appear to be limited by thermal fluctuations of x-rays absorbed in array frame.



Constellation The Constellation X-ray Mission

## $E/\delta E$ at 6 keV



## **Array and System Issues**

- o Achieving large-scale energy resolution uniformity
- o Achieving high fabrication yield
- Good mechanical characteristics for handling, thermal cycling and launch

Constellation

o Heat sinking of array

Immunity from cosmic ray heating

Minimal effects from bias power with large number of pixels

- o Signal leads: large number of pixels  $\Rightarrow$  high density interconnects
- o Cross talk (electrical and thermal)
- o Radiation hardness
- o Minimal dewar heat loads
- o Readout system robustness
- o Room-temperature electronics design

**High Density Interconnects for 32x32 Arrays** 



(Not to scale)

#### Array Components



Array of identical TES sensors shown without absorbers



Array of 15 fine-line stripline pairs

#### Constellation X The Constellation X-ray Mission



Integral, overhanging Bi absorbers



Cu micro-vias in Si (25 x 425 microns)



each plot contains data for 1 detector

only 4 wired TESs, so rows are cycled more often than feedback



- (true test of multiplexer without 8 or 16 detectors)
- Coupling to input SQUID NOT optimized (thus nonlinearity dominates degradation)
- Only cuts are for pulse pileup
- Degradation understood in terms of model
- Improvements needed to MUX 32 channels at the Con-X specifications are understood

### The next step in scaling: $4 \times 32$

- ♣ 16 × 16 calorimeter array (1/4 the size of a Con-X baseline array)
- 4 new 32-channel MUX chips (we will MUX half of the array this time around)
- Room-temperature electronics revision to double the bandwidth
- \* We will not yet have the full Con-X performance, but we're closing in on it



Constellation The Constellation X-ray Mission

#### XMS Detector System Technology Roadmap - Major Milestones

| Element                               | State-of-the-Art:<br>XRS                                    | Detector:<br>Current Best                                            | MUX:<br>Current Best                                     | Pre-prototype<br>TRL4                               | Prototype<br>TRL5                                                                                                                | Engineering<br>Test Unit<br>TRL6                              |
|---------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Array Size                            | 32                                                          | 8x8                                                                  |                                                          | 8 x 8                                               | 32 x 32                                                                                                                          | 32 x 32                                                       |
| Simultaneous<br>channels              | 32                                                          | 1                                                                    | 8 channels<br>4 pixels                                   | 16                                                  | 96                                                                                                                               | 1024                                                          |
| Component<br>technologies             |                                                             | TES,<br>superconducting<br>leads, absorbers                          | TES,<br>superconducting<br>leads, absorbers,<br>MUX      | TES,<br>superconducting<br>leads, absorbers,<br>MUX | Pre-PT components + array<br>heatsinking and high<br>density interconnects,<br>detector stage, faster MUX,<br>signal electronics | Integration with<br>ETU ADR,<br>cryocooler and<br>electronics |
| MUX Scale                             |                                                             |                                                                      | 1 x 8                                                    | 2 x 8                                               | 3 x 32 goal                                                                                                                      | 32 x 32                                                       |
| MUX Speed<br>(open loop<br>bandwidth) |                                                             |                                                                      | 1.5 MHz                                                  | 3.5 MHz                                             | 12 MHz                                                                                                                           | 12 MHz                                                        |
| Pixel Size                            | 0.64 mm                                                     | 0.25 mm                                                              | 0.4 mm                                                   | 0.25 mm                                             | 0.25 mm                                                                                                                          | 0.25 mm                                                       |
| System Noise                          |                                                             |                                                                      |                                                          | < 2 eV                                              | < 1 eV                                                                                                                           | < 1 eV                                                        |
| Energy<br>Resolution                  | 4.8 eV @ 6 keV, 50 mK<br>(3.8 @ 6 keV with<br>matched load) | 4.4 eV @ 6 keV<br>in flight-like, 2.4<br>eV @ 6 keV in<br>non-flight | 3.7 eV @ 6 keV in<br>field-optimized<br>non-flight pixel | 4 eV @ 6 keV                                        | 4 eV @ 6 keV<br>2 eV @ 1 keV                                                                                                     | 4 eV @ 6 keV<br>2 eV @ 1 keV                                  |
| Component qualification               |                                                             |                                                                      |                                                          |                                                     | Radiation, Vibration                                                                                                             | System<br>Qualification                                       |
| TRL                                   |                                                             | 3.5                                                                  | 3.8                                                      | 4                                                   | 5                                                                                                                                | 6                                                             |

#### Construction of NTD Ge Microcalorimeter Arrays

Each linear array module is fitted with a miniature connector attached to the bottom of the sapphire \_\_\_\_\_ substrate through which the electrical signals are fed .

Each module is inserted into a mating connector mounted into a *quadrant base*. A two-dimensional – array can be built up from a series of these stacked linear arrays. constructed in this way also



### **Continuous Adiabatic Demagnetization Refrigerator** (CADR) Concept and Requirements

| Cooling<br>Stage                  | Temperature | Cooling<br>Power | Temperature<br>Stability | Heat<br>Rejection<br>Temperature |
|-----------------------------------|-------------|------------------|--------------------------|----------------------------------|
| Detectors,<br>1st stage<br>SQUIDs | 50 mK       | 5 µW             | 2 µK rms                 | GK                               |
| 2nd stage<br>SQUIDs               | 1 K (TBR)   | 230 µW           | TBD                      | ΰĸ                               |



#### Operation

- First stage regulates load at desired temperature
- Upper stages cascade heat to the cryocooler
- Additional stage will provide continuous 1 K

### **CADR Demonstration Units**

#### 2-stage (9/00-12/00)



#### Heat transfer at 50 mK

3-stage CADR (6/01-12/01)

1.3 K helium bath

4-stage CADR (7/02-5/03)

#### 4-stage CADR (5/03-present)

Constellation The Constellation X-ray Mission



## Demonstrates functionality needed for Con-X

- High cooling power
- High efficiency
- High heat rejection (4.2K)

#### Demonstrates all components needed for Con-X

Low mass

#### CADR **Performance**

12

#### Control is fully automated

Including initial cool down

8 μW



Constellation The Constellation X-ray Mission





### **Technology Development Remaining**

- Develop improved refrigerants to further reduce size and mass
- Develop low current magnets that operate at ~6 K
  - Magnets must operate at the cryocooler's base temperature, 4-6 K
  - Currently funding development of Nb<sub>3</sub>Sn wire ( $T_c$ =18 K)
    - Prototype magnet achieved 3 T at 8 Amps at 10 K; Goal is <5 A</li>
- Electronics
  - Temperature stability is highly dependent on control and temperature readout electronics
  - Working with Lakeshore Cryotronics Inc. (SBIR Phase II) to develop controller
    - 1st test scheduled for Nov. 28, 2005 at GSFC
- Currently assembling a 4-stage CADR in a dewar with a 4 K cryocooler
  - Conduct tests with x-ray microcalorimeters to verify end-to-end performance
  - Will include continuous 1 K stage for SQUID amplifiers
- Suspension systems and ruggedization

Constellation

### **CADR Technology Roadmap**

| Element                        | 3-stage<br>CADR | 4-stage<br>CADR       | 4-stage<br>CADR       | 4-stage<br>CADR            | 50 mK & 1 K<br>CADR                                       | Breadboard               |
|--------------------------------|-----------------|-----------------------|-----------------------|----------------------------|-----------------------------------------------------------|--------------------------|
| Number of stages               | 3               | 4                     | 4                     | 4                          | 5                                                         | 5                        |
| Heat rejection temperature     | 1.3 K           | 4.2 K                 | 4.2 K                 | 4-5 K                      | 6 K                                                       | 6 K                      |
| Operating<br>temperatures      | 60 mK           | 50 mK                 | 50 mK                 | 50 mK                      | 50 mK/1 K                                                 | 50 mK/1 K                |
| Cooling power at<br>50 mK      |                 | 6 μW                  | 6 μW                  | > 6 μW                     | > 6 μW                                                    | > 5 μW                   |
| Cooling power of<br>"1K" stage |                 |                       |                       |                            | > 0.3 mW                                                  | > 0.23 mW                |
| Temperature<br>stability       |                 | 8 μK rms at<br>100 mK | 8 μK rms at<br>100 mK | 8 μK rms at<br>50 mK       | 2 μK rms at<br>50 mK                                      | 2 μK rms<br>above 1 Hz   |
| Mass                           | 18 kg           | 20 kg                 | 8 kg                  | 8 kg                       | 10 kg                                                     | 10 kg                    |
| Technology goal                |                 |                       | High-T<br>stage       | Cryocooler,<br>Electronics | 6 K magnets, Test<br>with x-ray detectors,<br>Electronics | Environmental<br>testing |
| Time frame                     | FY01            | FY02                  | FY03                  | FY06                       | FY07                                                      | FY08                     |
| TRL                            | 3               | 3.3                   | 3.7                   | 4                          | 5                                                         | 6                        |

### **Cryocooler Development**

- Cryocooler development needed for next generation space-based observatories
  - 4-6 K/18 K two-stage cooling
  - Remote cold heads (on deployable structures)
  - Minimal generated noise (EMI and vibration)
- Solution was the Advanced Cryocooler Technology Development Program (ACTDP)
- ACTDP requirements driven by three missions
  - James Webb Space Telescope
  - Terrestrial Planet Finder
  - Constellation-X
- Program designed to provide proven Development Model (DM) coolers in 2006



Cryocooler heat lift requirements derived from Microcalorimeter and ADR requirements

Constellation The Constellation X-ray Mission

ACTDP spec developed as a flight spec including vibration, EMI/EMC, contamination &c.





SPIE Conference, Orlando, May 29, 2006

Lockheed

4-Stage PT System

completed and in test

#### **Progress and Status - cont'd**

**Displacer Parts** 

Ball Aerospace Stirling Precooler Completed and in test



Shake Testing Precooler Coldhead Structure Completed NGST PT Precooler Testing



# J-Exc Te

J-T Heat Exchanger Testing



4-Stage PT Expander

SPIE Conference, Orlando, May 29, 2006

### Status:

- Constellation-X ACTDP reference cryocooler (Lockheed) has met XMS cooling requirements
- All three ACTDP vendors now sizing versions for 60 mW at 6 K
- **ACTDP** cryocooler technology development program complete.
  - NGST selected to build cryocooler for JWST/Mid-IR Instrument (MIRI)
- Cryocooler technology for Con-X awaiting further instrument definition

Design of 1024-channel (or more) detector assembly.

Signal Processing Electronics - 32 channels of XRS to 32 x 32.

Good ideas; need to actually implement with flight considerations in mind (mass, power, mechanical properties, etc.)

Constellation

Operating microcalorimeters in cryogen-free dewar systems to begin to assess issues of electromagnetic and vibration interference.

This is just beginning now.

Blocking filters - need thin and "defrostable" with low power

Low-level work at Wisconsin, Luxel Corp. and Goddard has begun but will need substantial support for flight development

#### **Concept for thermal and electrical staging**

Con-X/XMS

- Housing and thermal staging for the detector array, anticoincidence detector and SQUID amplifiers.
- Includes suspension systems, wiring interconnects, high density wiring feedthrus, multiplexers, and SQUID amplifiers.





Constellation X-ray Mission

To be developed to maintain the following at an acceptable level:

- Thermal stability, thermal gradient across array, and thermal crosstalk
- Electrical crosstalk, microphonics, magnetic shielding, and susceptibility to interference
- Conducted and radiative heat loads on all the temperatures stages

#### **Summary and Conclusions**

Substantial progress has been made since 1998 on advancing microcalorimeters for high resolution, larger numbers of smaller pixels, and speed.

X-ray microcalorimeters are commonly used in the lab with < 4 eV resolution.

Now have flight heritage with implanted Si, which provides valuable data for all types of x-ray microcalorimeters.

There are multiple paths toward producing a flight-qualified cryogen-free system for low temperature detectors.

More engineering work will be required to determine which approach is best for overall system robustness with acceptable weight and power figures.

The development program for the XMS has led to both breakthroughs and solid optimization work over the last eight years, and the groundwork has been laid to begin the next level of real engineering work toward flight systems.



### **Supporting Charts**

#### **Thin-film Blocking Filters**





 Table 16: Blocking Filter Requirements

| In Band Transmittance |               | Out-of-Band Transmittance |                       |  |
|-----------------------|---------------|---------------------------|-----------------------|--|
| Energy                | Transmittance | Energy                    | Transmittance         |  |
| $0.5 \ \mathrm{keV}$  | > 16 %        | IR (3-30 µm)              | $< 3 \times 10^{-11}$ |  |
| 1.0  keV              | > 52 %        | 10.2  eV (1216  Å)        | $< 1 \times 10^{-7}$  |  |
| $6.0 \ \mathrm{keV}$  | > 70 %        | 21.2  eV (584  Å)         | $< 1 \times 10^{-6}$  |  |
| 10.0  keV             | > 70 %        | 40.8  eV (304  Å)         | $< 3 \times 10^{-6}$  |  |

Table 17: Properties of the blocking filters

| Label/        | Luxel      | Nominal Thickness     |           |          |                           |  |
|---------------|------------|-----------------------|-----------|----------|---------------------------|--|
| Serial Number | Run Number | Pinhole Trans         | Polyimide | Aluminum | Mesh                      |  |
| CTS-FM-05     | 9328.4     | $3.80 \times 10^{-4}$ | 737 Å     | 508  Å   | None                      |  |
| FEA-FM-201    | 9328.4     | $4.33 \times 10^{-4}$ | 737 Å     | 508 Å    | None                      |  |
| Neon-FM-202   | 9495.2     | $3.59 \times 10^{-8}$ | 1023 Å    | 1088  Å  | None                      |  |
| IVCS-FM-204   | 9495.1     | $2.69 \times 10^{-8}$ | 1025 Å    | 1088  Å  | None                      |  |
| DMS-FM-201    | 9498.4     | $1.31 \times 10^{-5}$ | 1060 Å    | 802 Å    | 70 lines/inch Ni (T=78 %) |  |



### Filters for XMS

Discussed with Luxel Corporation (in 2000) the prospects for fabricating thinner filters for increased transmission at lower energies.

They provided an plausible limit to how thin they think reliable filters could be made, assuming there is some kind of support structure (e.g., a Kevlar mesh). See table.

Larger diameter filters are a potential issue:

- Larger unsupported area vs. lower mass.
- Need to set up a R&D program as soon as possible.
- The XRS program did this for many years, including cold vibration tests.

| XRS vs. <i>Possible</i> XMS filters (total thicknesses) |      |      |  |  |
|---------------------------------------------------------|------|------|--|--|
| AI (Å) Poly (Å)                                         |      |      |  |  |
| XRS                                                     | 3992 | 4582 |  |  |
| XMS                                                     | 2100 | 2800 |  |  |

Constellation The Constellation X-ray Mission

#### Large arrays using semiconductor thermometers

Large arrays of ion-implanted can be fabricated. Supporting technologies could make this approach tractable.

Simultaneous absorber attachment

- research is ongoing.



Constellation The Constellation X-ray Mission

Thermal isolation stages integrated with JFET fabrication

- has been approached in the past and could be revived.



Single JFET