Black hole astrophysics in the new century

X-ray probes of strong gravity and cosmic feedback

Chris Reynolds
Department of Astronomy
University of Maryland

A new era of black hole research

- Existence of both stellar and supermassive black holes seems secure
 - Exotic physics required to escape black hole conclusion in Galactic Center

- Every galactic bulge seem to host a supermassive black hole

Movie from Genzel group
Similar work by Ghez group
The wider importance of black holes

- Supermassive black holes have cosmological importance…

- Energy output from black holes growth may be crucial factor in formation/evolution of massive galaxies

- Galaxy and SMBH growth coupled by powerful feedback processes

Kormendy & Gebhardt (2001)
Gebhardt et al. (2000)
Ferrarese & Merritt (2000)
Open issues…

- Are black holes really described by General Relativity?
 - Is the Kerr metric a good description of black hole spacetime?

- How does black hole accretion and jet production work?
 - How is accretion energy channeled into radiation & kinetic energy?
 - What is the role of black hole spin?

- How is massive black hole growth and galaxy formation coupled?
 - How do feedback processes couple enormous spatial scales?
Outline

• Talk about progress due to developments in X-ray instrumentation

• Probing the strong gravity regime with X-ray spectroscopy
 – The robustness of the relativistic signatures
 – Confronting accretion disk theory with data
 – Measurements of black hole spin

• Large scale environmental impact of black holes
 – The cooling flow problem and the radio-galaxy solution
 – Difficulties faced by radio-galaxy feedback models and possible solutions
I : PROBES OF THE STRONG GRAVITY REGIME

- ASCA observation of MCG-6-30-15…
 - Revealed extremely broadened/skewed iron emission line (Tanaka et al. 1995)
 - Confirmed by XMM

- What are we seeing?
 - Believe line to originate from surface layers of innermost accretion disk
 - Line broadened and skewed by Doppler effect and gravitational redshifting

Power-law continuum subtracted
ASCA: Tanaka et al. (1995)
• ASCA observation of MCG-6-30-15…
 - Revealed extremely broadened/skewed iron emission line (Tanaka et al. 1995)
 - Confirmed by XMM

• What are we seeing?
 - Believe line to originate from surface layers of innermost accretion disk
 - Line broadened and skewed by Doppler effect and gravitational redshifting

Power-law continuum subtracted
XMM: Fabian et al. (2002)
I : PROBES OF THE STRONG GRAVITY REGIME

• ASCA observation of MCG-6-30-15…
 – Revealed extremely broadened/skewed iron emission line (Tanaka et al. 1995)
 – Confirmed by XMM

• What are we seeing?
 – Believe line to originate from surface layers of innermost accretion disk
 – Line broadened and skewed by Doppler effect and gravitational redshifting

Pseudo-Newtonian MHD simulation Ray-traced through Schwarzschild metric
Iron line from X-ray reflection

Backscattered spectrum from X-ray irradiation of the “cold” optically-thick disk...

- Fluorescence/radiative recomb. lines
- Radiative recombination continuum
- Compton backscattered continuum

Self-consistent model of X-ray reflection from ionized disk (Ross & Fabian 2005)
Iron lines in AGN

MCG-5-23-16 (Dewangan 2003)

PG 1211+143 (Pounds 2003)

Lockman hole (Streblyanskaya et al 2004)

IRAS 18325 (Iwasawa 2004)
Iron lines in Galactic Black Hole Binaries

GX 339-4 (XMM)

GRS 1915+105 (CXO)

$R_{in} = 2.9^{+0.1}$

GX 339-4 (CXO)

XTE J1650-500 (XMM)
Must be careful to account for effects of absorption...
• Fitting 3-6 keV and 8-10 keV band, can reproduce "red-wing" curvature from iron-L absorption (Kinkhabwala 2003; PhD thesis)

• Generic prediction - significant iron K line absorption from FeXVII-FeXXIII (~6.4-6.6 keV)
Clearly do not see the FeXVII-FeXXIII absorption lines that accompany a "broad-line mimicking" wa

TESTING BLACK HOLE ACCRETION DISK MODELS

- Current paradigm
 - Accretion proceeds through disk due to MHD turbulence (Shakura & Sunyaev 1973; Balbus & Hawley 1991)
 - Full GR-MHD simulations of **non-radiative** disks possible
- Radiatively-efficient disks
 - Gross properties amenable to semi-analytic modeling
 - Novikov & Thorne (1974)
 - Geom. thin, efficient disk
 - Material plunges into BH ballistically once within the innermost stable circular orbit

Hirose et al. (2004); also see Koide et al. (2000), McKinney (2005), Komissarov (2005).
TESTING BLACK HOLE ACCRETION DISK MODELS

• Current paradigm
 – Accretion proceeds through disk due to MHD turbulence (Shakura & Sunyaev 1973; Balbus & Hawley 1991)
 – Full GR-MHD simulations of non-radiative disks possible

• Radiatively-efficient disks
 – Gross properties amenable to semi-analytic modeling
 – Novikov & Thorne (1974)
 o Geom. thin, efficient disk
 o Material plunges into BH ballistically once within the innermost stable circular orbit

\[
\begin{align*}
 r_{in} & \to \frac{6GM}{c^2} \quad a = 0 \\
 r_{in} & \to \frac{GM}{c^2} \quad a \to 1
\end{align*}
\]
TESTING BLACK HOLE ACCRETION DISK MODELS

• Current paradigm
 – Accretion proceeds through disk due to MHD turbulence (Shakura & Sunyaev 1973; Balbus & Hawley 1991)
 – Full GR-MHD simulations of non-radiative disks possible

• Radiatively-efficient disks
 – Gross properties amenable to semi-analytic modeling
 – Novikov & Thorne (1974)
 o Geom. thin, efficient disk
 o Material plunges into BH ballistically once within the innermost stable circular orbit

\[a = 0.9981 \]
TESTING BLACK HOLE
ACCRETION DISK MODELS

- Current paradigm
 - Accretion proceeds through disk due to MHD turbulence (Shakura & Sunyaev 1973; Balbus & Hawley 1991)
 - Full GR-MHD simulations of non-radiative disks possible
- Radiatively-efficient disks
 - Gross properties amenable to semi-analytic modeling
 - Novikov & Thorne (1974)
 - Geom. thin, efficient disk
 - Material plunges into BH ballistically once within the innermost stable circular orbit

Deep Minimum of MCG-6-30-15
XMM (Reynolds et al. 2004)
Iron lines broader than predicted from NT disk ⇒ Irradiation more centrally concentrated than NT prediction

Underlying disk is NT-like, but X-ray irradiation does not track local dissipation (need light bending)

Irradiation tracks a dissipation that is much more centrally concentrated than NT law
Gravitational light bending?

- Suppose X-ray source is base of a jet?
 - X-rays will be gravitationally focused onto central parts of disk
 - Can produce very centrally concentrated irradiation pattern!
 - Data suggest $h \sim$ few GM/c^2

- Geometry first discussed in Fe-K line context by Marttochia & Matt (1996)
- Applied to ASCA data for MCG-6-30-15 by Reynolds & Begelman (1997)
- Applied to XMM data for MCG-6-30-15 by Minuitti & Fabian (2004)
Iron lines broader than predicted from NT disk
⇒ Irradiation more centrally concentrated than NT prediction

Underlying disk is NT-like, but X-ray irradiation does not track local dissipation (need light bending)

Irradiation tracks a dissipation that is much more centrally concentrated than NT law
Enhanced dissipation in central regions of disk?

- Recent work suggests importance of “torqued accretion disks”
 - Magnetic fields may lead to continued extraction of energy/ang-momentum of matter plunging within ISCO
 - Plunging matter exerts torque on rest of disk
 - Work done by torque dissipated in innermost regions of the disk

- In extreme case, this might produce a Penrose process and allow the BH spin to be tapped.

Enhanced dissipation in central regions of disk?

- Recent work suggests importance of “torqued accretion disks”
 - Magnetic fields may lead to continued extraction of energy/ang-momentum of matter plunging within ISCO
 - Plunging matter exerts torque on rest of disk
 - Work done by torque dissipated in innermost regions of the disk

- In extreme case, this might produce a Penrose process and allow the BH spin to be tapped.

Deep Minimum of MCG-6-30-15 XMM (Reynolds et al. 2004)
Enhanced dissipation in central regions of disk?

- Recent work suggests importance of “torqued accretion disks”
 - Magnetic fields may lead to continued extraction of energy/ang-momentum of matter plunging within ISCO
 - Plunging matter exerts torque on rest of disk
 - Work done by torque dissipated in innermost regions of the disk

- In extreme case, this might produce a Penrose process and allow the BH spin to be tapped.

Deep Minimum of MCG-6-30-15
XMM (Reynolds et al. 2004)
BLACK HOLE SPIN

• Importance of spin
 – Large energy store (upto 29% of rest mass energy)
 – Spin may retain memory of black hole formation
 – First step in testing Kerr metric

• Diagnose spin through its effects on the accretion disk structure
 – Major effect change in the location of the innermost stable circular orbit (ISCO)
If we assume no X-ray reflection from within the ISCO…

- For progressively more rapidly rotating BHs…
 - ISCO moves inwards to a higher gravitational redshift region
 - For given inclination, maximum redshift of iron line increases

- Applied to long (350ks) XMM dataset for MCG-6
 - Data strongly prefers rapidly spinning BH solution
 - $a = 0.95 \pm 0.04$

Brenneman & Reynolds, in prep
If we assume no X-ray reflection from within the ISCO...

- For progressively more rapidly rotating BHs...
 - ISCO moves inwards to a higher gravitational redshift region
 - For given inclination, maximum redshift of iron line increases
- Applied to long (350ks) XMM dataset for MCG-6
 - Data strongly prefers rapidly spinning BH solution
 - $a = 0.95 \pm 0.04$

Brenneman & Reynolds, in prep
THE PROMISE OF CONSTELLATION-X

- Constellation-X
 - Major component of NASA’s Beyond Einstein program
 - Imaging spectroscopy with superior spectral resolution and collecting area

- Allows study of short-term broad iron line variability
 - Dynamical timescale variability ⇒ trace orbits of distinct structures in disk
 - Light crossing timescale variability ⇒ follow echos of X-ray flares across disk
THE PROMISE OF CONSTELLATION-X

- Constellation-X
 - Major component of NASA’s Beyond Einstein program
 - Imaging spectroscopy with superior resolution and collecting area

- Allows study of short-term broad iron line variability
 - Dynamical timescale variability \Rightarrow trace orbits of distinct structures in disk
 - Light crossing timescale variability \Rightarrow follow echos of X-ray flares across disk

THE PROMISE OF CONSTELLATION-X

- Constellation-X
 - Major component of NASA’s Beyond Einstein program
 - Imaging spectroscopy with superior resolution and collecting area

- Allows study of short-term broad iron line variability
 - Dynamical timescale variability ⇒ trace orbits of distinct structures in disk
 - Light crossing timescale variability ⇒ follow echoes of X-ray flares across disk

Similar features from outer disk already hinted at by XMM-Newton NGC3516 (Iwasawa et al. 2004) & Mrk 766 (Turner et al. 2005)
THE PROMISE OF CONSTELLATION-X

- Constellation-X
 - Major component of NASA’s Beyond Einstein program
 - Imaging spectroscopy with superior resolution and collecting area

- Allows study of short-term broad iron line variability
 - Dynamical timescale variability ⇒ trace orbits of distinct structures in disk
 - Light crossing timescale variability ⇒ follow echos of X-ray flares across disk

Reynolds et al. (1999)
Young & Reynolds (2000)
II : MASSIVE BLACK HOLES & MASSIVE GALAXY FORMATION

- Galaxy luminosity function
 - Suppressed at high and low luminosity end compared with simply ΛCDM predictions
 - High-L suppression must be more efficient than star formation

- Do AGN suppress high-end of galaxy LF?

Benson et al. (2003)
Intracluster medium (ICM) Hot (10^7-10^8K), tenuous (0.001-0.1cm$^{-3}$) plasma.

XMM-Newton observation of Virgo cluster Matsushita et al. (2002)

THE COOLING FLOW PROBLEM
The Λ87 Jet
How can AGN jets heat ICM isotropically?

Cocoon structure; Scheuer (1974)

Can heat isotropically by either shock heating or dissipation of sound waves

2-d hydro simulations
Reynolds et al. (2002)
Chandra observations of cooling-core clusters

- Cygnus-A
 Smith et al. (2002)

- Perseus-A
 Fabian et al. (2000)

- Hydra-A
 Nulsen et al. (2004)

- Abell 4059 / PKS2354-35
 Heinz et al. (2002)

- Virgo/M87
 Young et al. (2002)

Synopsis:
Jet-blown cavities common
“Ghost” cavities common
Strong shocks elusive!
Modeling the feedback loop

- Feedback model \Rightarrow average AGN heating balances ICM cooling
- Analysis of ICM cavities shows that kinetic power and cooling luminosity are indeed related
- Nature must modulate AGN fueling according to ICM properties
- First attempts to model this…
 - Ideal hydro model of jet/ICM interaction
 - Jet power proportional to cooling flow rate
 - FAIL to produce successful balance

Also see McNamara (2000)
Does the “feedback” loop work?

- Feedback model ⇒ average AGN heating balances ICM cooling
- Analysis of ICM cavities shows that kinetic power and cooling luminosity are indeed related
- Nature must modulate AGN fueling according to ICM properties
- First attempts to model this…
 - Ideal hydro model of jet/ICM interaction
 - Jet power proportional to cooling flow rate
 - FAIL to produce successful balance

Delayed fueling scenario
Vernaleo & Reynolds, submitted

Runaway cooling in the equatorial regions
Does the “feedback” loop work?

- Feedback model \Rightarrow average AGN heating balances ICM cooling
- Analysis of ICM cavities shows that kinetic power and cooling luminosity are indeed related
- Nature must modulate AGN fueling according to ICM properties
- First attempts to model this…
 - Ideal hydro model of jet/ICM interaction
 - Jet power proportional to cooling flow rate
 - FAILS to produce successful balance

Delayed fueling scenario
Vernaleo & Reynolds, submitted
What ingredients are missing from the feedback model?

- MHD and Plasma transport processes
 - Thermal conduction and Viscosity
 - Dissipation of wave energy
 - New instabilities of the ICM atmosphere
- Precession of the jet axis
 - Need to be quasi-isotropic on cooling timescale (few×10^8 yr)
- Dissipation of energy stored in global ICM modes?

Evidence for dissipation of sounds waves by thermal conduction (see Fabian, Reynolds et al. 2005)
What ingredients are missing from the feedback model?

- MHD and Plasma transport processes
 - Thermal conduction and Viscosity
 - Dissipation of wave energy
 - New instabilities of the ICM atmosphere
- Precession of the jet axis
 - Need to be quasi-isotropic on cooling timescale (few×10⁸ yr)
- Dissipation of energy stored in global ICM modes?

3C401 (Chandra and MERLIN cont.)
Reynolds, Brenneman & Stocke (2005)
Conclusions

• New era of black hole research
 – Detailed studies of black hole physics and relativistic accretion
 – Impact of black holes on galactic scale structure

• Strong gravity studies with XMM and Chandra
 – Robust signatures of strong gravity exist
 – Measurements of black hole spin and signs of interesting spin-related astrophysics
 – Constellation-X and LISA will bring tremendously exciting future

• Jetted AGN and cluster cooling flows
 – Puzzles; how are ICM cores being heated?
 – Need for more physics
The End
Iron line variability

Low flux data: Reynolds et al. (2004)
High flux data: Fabian et al. (2002)
Enhanced dissipation in central regions of disk?

- Recent work suggests importance of “torqued accretion disks”
 - Magnetic fields may lead to continued extraction of energy/ang-mtm of matter plunging within ISCO
 - Plunging matter exerts torque on rest of disk
 - Work done by torque dissipated in innermost regions of the disk

- In extreme case, this might produce a Penrose process and allow the BH spin to be tapped.
The way forward

- Better modeling
 - More physics (MHD, plasma processes)
 - Put in cosmological setting
- Better data
 - More deep Chandra observations
 - Direct kinematics from high-resolution X-ray spectroscopy (rebuild of Astro-E2?, Constellation-X)