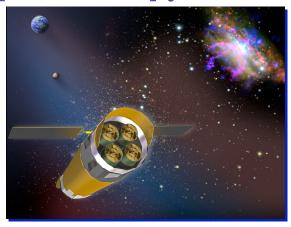
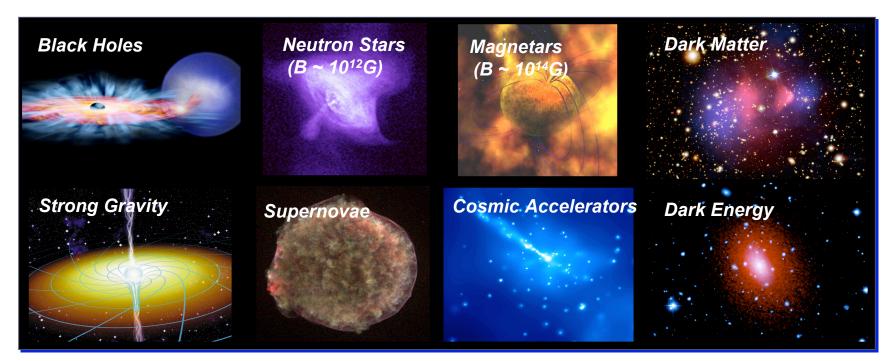


The Constellation-X Mission


Jean Cottam (NASA/GSFC)

Astrophysics of Compact Objects Huangshan City, China July 2007



Constellation-X Will Open a New Window on X-ray Spectroscopy

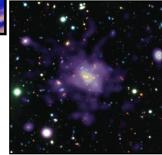
- X-ray emission probes the physics of extreme processes, places and events.
- Chandra and XMM-Newton brought x-ray astronomy to the forefront
- Con-X throughput for high resolution spectroscopy is 100 times higher than Chandra and XMM
 - ⇒ X-ray astronomy becomes X-ray astrophysics

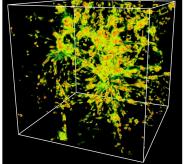
Driving Science Objectives

Black Holes

Use black holes to test General Relativity and measure black hole spin

Dark Energy (and Dark Matter)

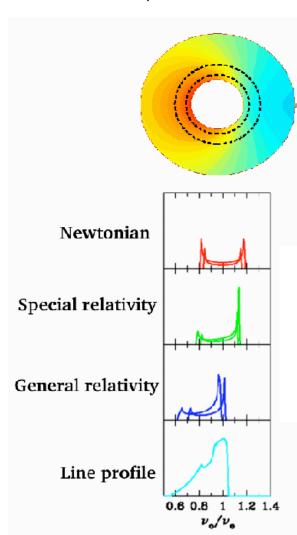

Use Galaxy Clusters to provide factor of ten improvement in key Dark Energy (DE) parameters

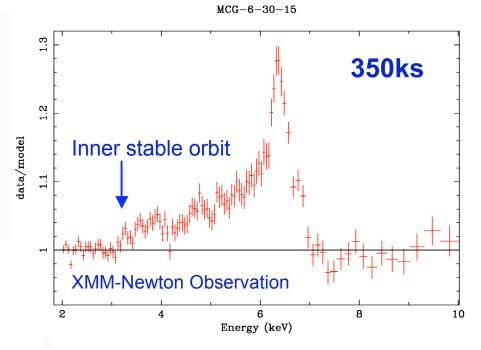

Missing Baryons

Unambiguous detection of the hot phase of the Warm-Hot Intergalactic Medium (WHIM) at z>0

Neutron Star Equation of State

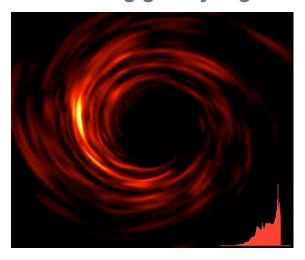
Measuring the mass-radius relation of neutron stars to determine the Equation of State (EOS) of ultradense matter

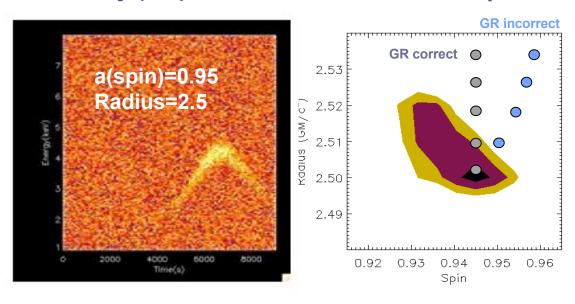




Black Holes: Accretion Disks and X-ray Reflection

The Iron fluorescence emission line is created when X-rays scatter and are absorbed in dense matter, close to the event horizon of the black hole.

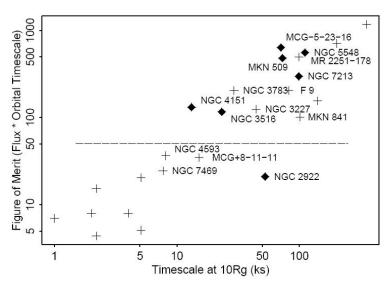

- Relativistically broadened iron K lines have been detected from within 6 gravitational radii of Black Holes by ASCA, XMM-Newton, Chandra and Suzaku
- ♣Further progress towards using this feature as a strong gravity diagnostic requires Constellation-X



Black Holes

Use black holes to test General Relativity (GR) and measure black hole spin

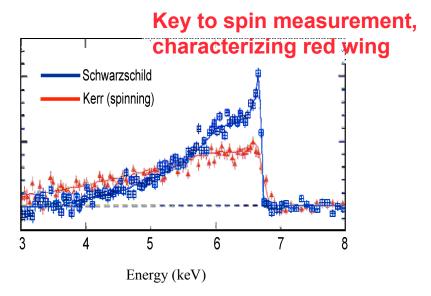
- ♣ Con-X will probe close to the event horizon with 100× better sensitivity to:
 - Follow dynamics of individual "hot spots" to determine spin as a function of radius in disk.
 - Spin measurements vs radius provide a powerful consistency check of GR in the strong gravity regime.



Detectability depends on X-ray flux, line intensity, and orbital timescale (FOM)

Key to GR tests with hot spots: large collecting area and good spectral resolving power

Black Holes: Measurements

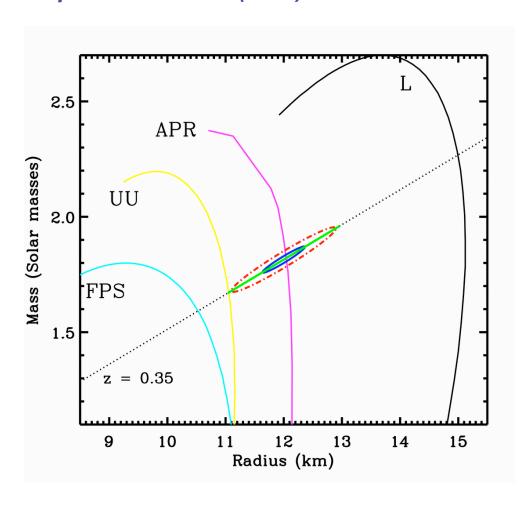


ASCA X-ray sample of AGN

Time-variable Fe K measurements

- Target list for GR tests known and growing
- Single target sufficient to test GR under strong gravity
- Currently >dozen targets over FOM requirement
- Range of masses at least 1, perhaps3 orders of magnitude

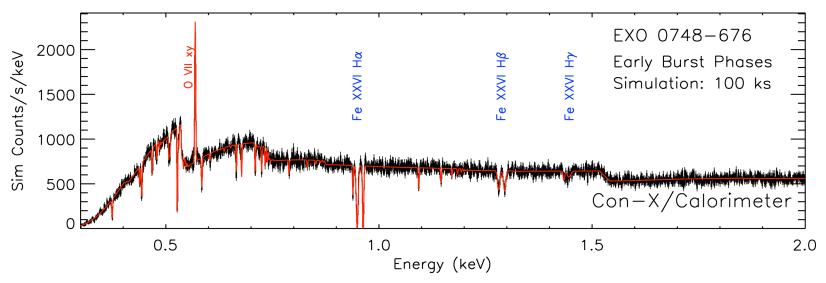
Detailed characterization of broad FeK line to measure spin for several hundred AGN over a range of luminosity and redshift


Continuum Is Key For Spin Measurements:

- Require 150 cm² at 10-40 keV
- Spectral resolving power R=2400 required to resolve warm absorber (permits continuum to be measured)

Neutron Stars

Measuring the mass-radius relation of neutron stars to determine the Equation of State (EOS) of ultra-dense matter



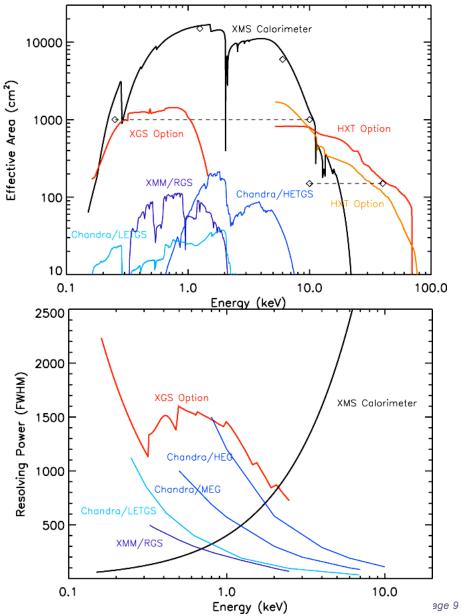
- NS contain the densest states of matter in the universe.
- ♣ The nuclear physics that governs the interactions between constituent particles predicts mass/radius relations.
- X-ray bursts from LMXBs provide ideal conditions for measuring the Equation of State for neutron stars.
- Con-X will provide high S/N atmospheric absorption spectra, and measure burst oscillations for a large sample of neutron stars covering a range of masses.

Neutron Star EOS

Two measurement techniques:

Measurement #1 – Absorption spectroscopy:

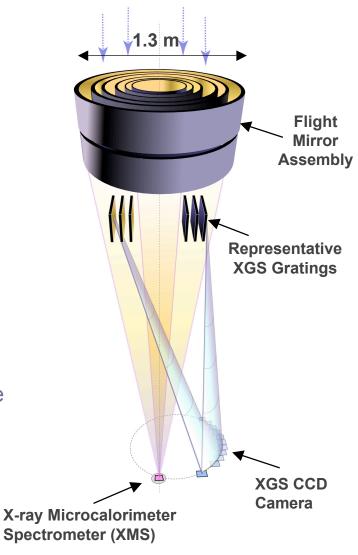
- Absorption spectra provide a direct measure of gravitational redshift at surface of the star ($z \propto M/R$).
- ♣ The measured widths of the lines constrains the NS radius to 5-10% (compare to best present constraints: 9.5-15 km for EXO 0748-676).


Measurement #2 – Burst oscillations:

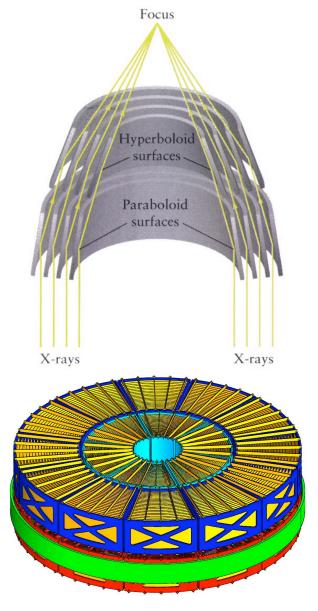
♣ Pulse shapes of burst oscillations can provide an independent measure of the mass and radius to a few percent. Requires 100 microsec timing and ability to handle count rates up to 0.25 Crab.

Science Objectives Flow Into Key Performance Requirements

Bandpass:	0.3 – 40 keV
Effective Area:	15,000 cm ² @ 1.25 keV 6,000 cm ² @ 6 keV 150 cm ² @ 40 keV
Spectral Resolution:	1250 @ 0.3 – 1 keV 2400 @ 6 keV
Angular Resolution	15 arcsec 0.3 – 7 keV (5 arcsec goal) 30 arcsec 7.0 – 40 keV
Field of View	5 x 5 arcmin

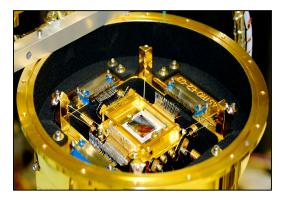


Mission Implementation

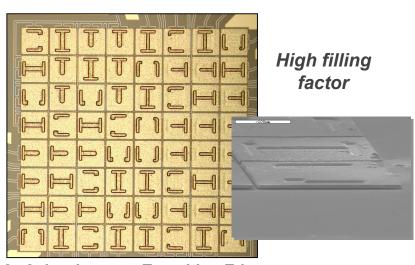

- ♣ To meet the requirements, our technical implementation consists of:
 - 4 SXTs each consisting of a Flight Mirror Assembly (FMA) and a X-ray Microcalorimeter Spectrometer (XMS)
 - Covers the bandpass from 0.6 to 10 keV
 - Two additional systems extend the bandpass:
 - X-ray Grating Spectrometer (XGS) dispersive from 0.3 to 1 keV (included in one or two SXT's)
 - Hard X-ray Telescope (HXT) non-dispersive from 6 to 40 keV
- Instruments operate simultaneously:
 - Power, telemetry, and other resources sized accordingly

4 Spectroscopy X-ray Telescopes

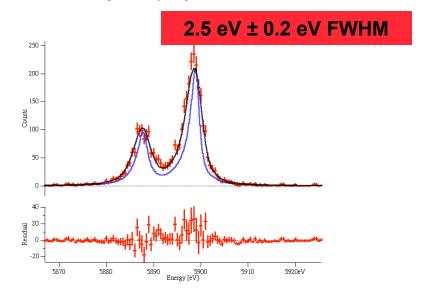
Spectroscopy X-ray Telescope (SXT)



- Trade-off between collecting area and angular resolution
- ♣ The 0.5 arcsec angular resolution state of the art is *Chandra*
 - Small number of thick, highly polished substrates leads to a very expensive and heavy mirror with modest area
- ♣ Constellation-X collecting area (~10 times larger than Chandra) combined with high efficiency microcalorimeters increases throughput for high resolution spectroscopy by a factor of 100
 - 15 arcsec angular resolution required to meet science objectives (5 arcsec is goal)
 - Thin, replicated segments pioneered by ASCA and Suzaku provide high aperture filling factor and low 1 kg/m² areal density



X-ray Microcalorimeter Spectrometer (XMS)


- X-ray Microcalorimeter: thermal detection of individual X-ray photons
 - High spectral resolution
 - ∆E very nearly constant with E
 - High intrinsic quantum efficiency
 - Non-dispersive spectral resolution not affected by source angular size
- ♣ Transition Edge Sensor (TES), NTD/Ge and magnetic microcalorimeter technologies under development

Suzaku X-ray calorimeter array achieved 7 eV resolution on orbit

8 x8 development Transition Edge Sensor array: 250 μm pixels

Current Status

- Constellation-X is an approved NASA astrophysics mission, currently pre-phase A with the focus on technology development and optimizing the mission configuration
 - Recently completely a reconfiguration study that streamlined the mission configuration and maintained the science goals
- ♣ Constellation-X is the next major NASA astrophysics observatory, to follow after JWST (2013 launch), based on its ranking in the 2000 Decadal survey - budget wedge opens around 2009/2010 with 2017/18 the earliest realistic launch date
- ♣ A National Academy Review is currently examining the five Beyond Einstein missions (Con-X, LISA, JDEM, Black Hole Finder, Inflation Probe) to resolve conflicting advice between 2000 Decadal Survey and Quarks to Cosmos Academy reports and will recommend in Sept 2007:
 - which Beyond Einstein mission should be launched first, and
 - technology investments for the 2010 decadal survey

Summary

- Constellation-X opens the window of X-ray spectroscopy with a two order of magnitude gain in capability over current missions
- ♣ Two science goals driving the need for this new capability are:
 - Black Holes: precisions tests of GR in the strong field limit and determination of Black Hole spin in a large sample
 - Neutron Stars: Precision measurements of the mass-radius relation of neutron stars to determine the Equation of State (EOS) of ultra-dense matter
- Constellation-X is a Great Observatory that will enable a broad range of science that will engage a large community Astrophysicists, Cosmologists, and Physicists through an open General Observer Program

http://constellation.gsfc.nasa.gov