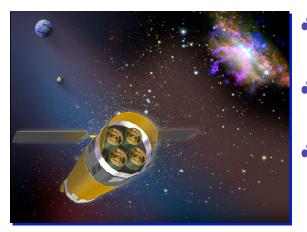
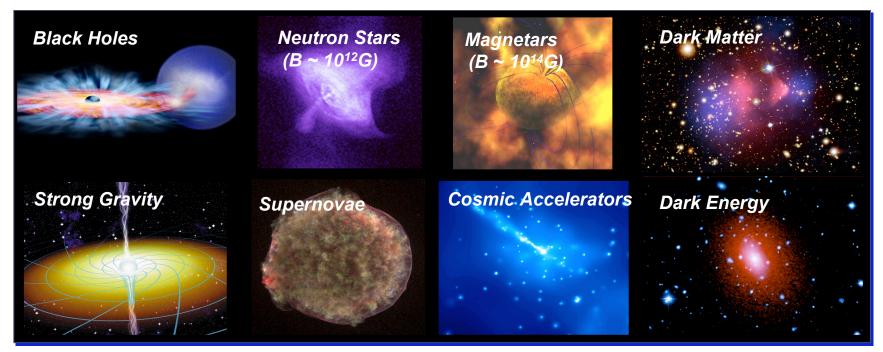
BEYOND EINSTEIN: From the Big Bang to Black Holes


Constellation X-Ray Mission

Jean Cottam (NASA/GSFC)

X-ray Grating Spectroscopy Cambridge July 2007


Constellation-X Will Open a New Window on X-ray Spectroscopy

X-ray emission probes the physics of extreme processes, places and events.

Constellation X-Ray Mission

- Chandra and XMM-Newton brought x-ray astronomy to the forefront
- Con-X throughput for high resolution spectroscopy is 100 times higher than Chandra and XMM
 - \Rightarrow X-ray astronomy becomes X-ray astrophysics

X-ray Grating Spectroscopy - Cambridge - July 2007 / Page 2

Driving Science Objectives

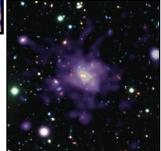
Black Holes

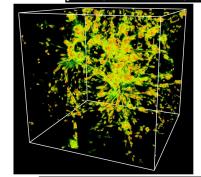
Use black holes to test General Relativity and measure black hole spin

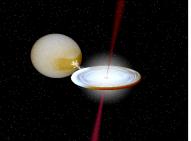
Dark Energy (and Dark Matter)

Use Galaxy Clusters to provide factor of ten improvement in key Dark Energy (DE) parameters

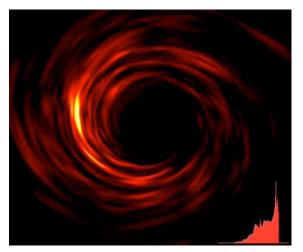
Missing Baryons

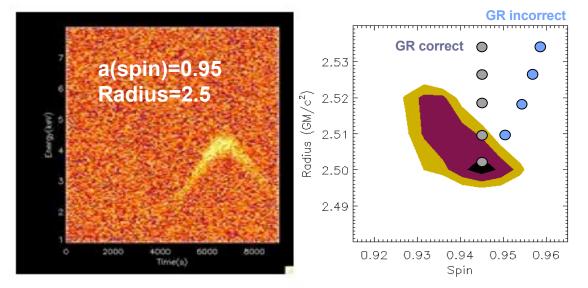

Unambiguous detection of the hot phase of the Warm-Hot Intergalactic Medium (WHIM) at z>0


Neutron Star Equation of State


Measuring the mass-radius relation of neutron stars to determine the Equation of State (EOS) of ultradense matter

Constellation X-Ray Mission

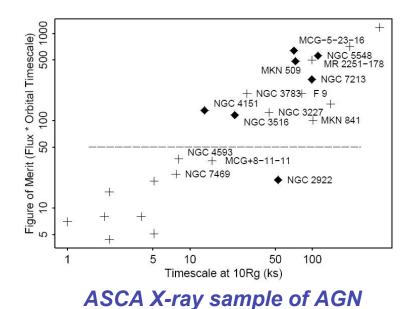



X-ray Grating Spectroscopy - Cambridge - July 2007 / Page 3

Black Holes

Use black holes to test General Relativity (GR) and measure black hole spin

- Con-X will probe close to the event horizon with 100× better sensitivity to:
 - Follow dynamics of individual "hot spots" to determine spin as a function of radius in disk.
 - Spin measurements vs radius provide a powerful consistency check of GR in the strong gravity regime.

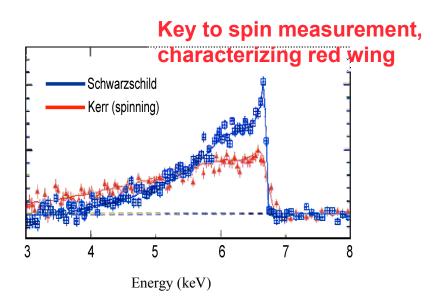


Constellation X-Ray Missio

Detectability depends on X-ray flux, line intensity, and orbital timescale (FOM)

Key to GR tests with hot spots: large collecting area and good spectral resolving power

Black Holes: *Measurements*

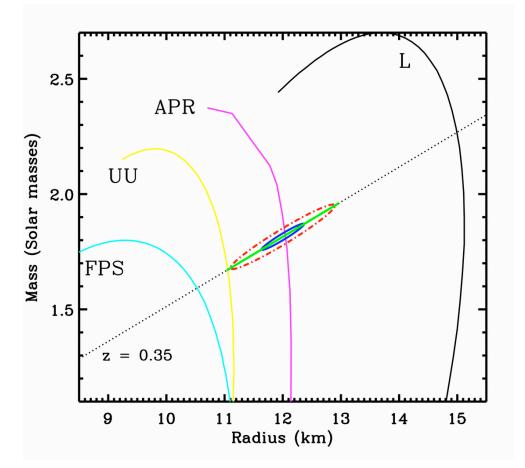


Time-variable Fe K measurements

- Target list for GR tests known and growing
- Single target sufficient to test GR under strong gravity
- Currently >dozen targets over FOM requirement
- Range of masses at least 1, perhaps 3 orders of magnitude

Detailed characterization of broad FeK line to measure spin for several hundred AGN over a range of luminosity and redshift

Constellation X-Ray Missio

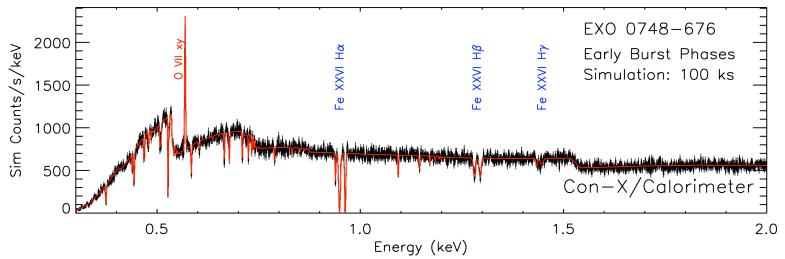


Continuum Is Key For Spin Measurements:

- Require 150 cm² at 10-40 keV
- Spectral resolving power R=2400 required to resolve warm absorber (permits continuum to be measured)

Neutron Stars

Measuring the mass-radius relation of neutron stars to determine the Equation of State (EOS) of ultra-dense matter


NS contain the densest states of matter in the universe.

Constellatior

- The nuclear physics that governs the interactions between constituent particles predicts mass/radius relations.
- X-ray bursts from LMXBs provide ideal conditions for measuring the Equation of State for neutron stars.
- Con-X will provide high S/N atmospheric absorption spectra, and measure burst oscillations for a large sample of neutron stars covering a range of masses.

Neutron Star EOS

Two measurement techniques: atmospheric absorption and burst oscillations

Measurement #1 – Absorption spectroscopy:

- Absorption spectra provide a direct measure of gravitational redshift at surface of the star (z \propto M/R).
- The measured widths of the lines constrains the NS radius to 5-10% (compare to best present constraints: 9.5-15 km for EXO 0748-676).

Measurement #2 – Burst oscillations:

Pulse shapes of burst oscillations can provide an independent measure of the mass and radius to a few percent. Requires 100 microsec timing and ability to handle count rates up to 0.25 Crab.

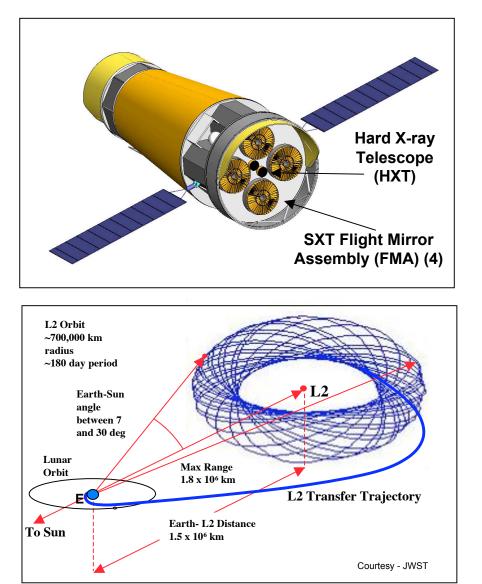
Constellation

Science Objectives Flow Into Key Performance Requirements

Bandpass:	0.3 – 40 keV
Effective Area:	15,000 cm ² @ 1.25 keV 6,000 cm ² @ 6 keV 150 cm ² @ 40 keV
Spectral Resolution:	1250 @ 0.3 – 1 keV 2400 @ 6 keV
Angular Resolution	15 arcsec 0.3 – 7 keV (5 arcsec goal) 30 arcsec 7.0 – 40 keV
Field of View	5 x 5 arcmin

A factor of ~100 increased area for high resolution X-ray spectroscopy

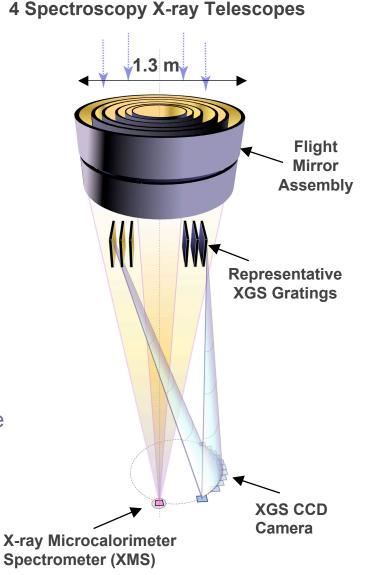
Constellation


Angular resolution requirement of 15 arc sec (goal of 5 arc sec HPD)

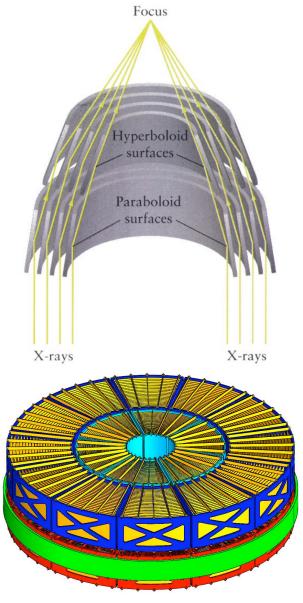
Field of View 5 x 5 arc min (64x64 pixels, goal of 10 x 10 arc min FOV)

Ability to handle 1,000 ct/sec/pixel required for studies of nearby black holes and neutron stars

Mission Approach


- High throughput achieved with 4 telescope systems on a single satellite
 - Complemented by low and high energy instruments
- L2 Orbit; 700,000 km radius halo orbit
 - High operational efficiency
 - Uninterrupted viewing
 - Stable temperature
- Field of regard allows full sky coverage every 180 days
 - Pitch: +/- 20° off Sunline
 - Yaw: +/- 180°
 - Roll: +/- 20° off Sunline
- ♣ 5 year life; 10 years on consumables

Constellation

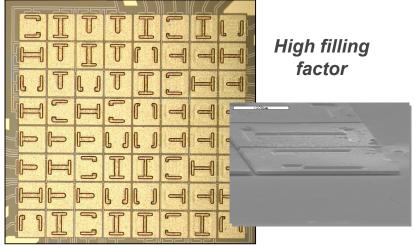

Mission Implementation

- To meet the requirements, our technical implementation consists of:
 - 4 SXTs each consisting of a Flight Mirror Assembly (FMA) and a X-ray Microcalorimeter Spectrometer (XMS)
 - Covers the bandpass from 0.6 to 10 keV
 - Two additional systems extend the bandpass:
 - X-ray Grating Spectrometer (XGS) dispersive from 0.3 to 1 keV (included in one or two SXT's)
 - Hard X-ray Telescope (HXT) non-dispersive from 6 to 40 keV
- Instruments operate simultaneously:
 - Power, telemetry, and other resources sized accordingly

Constellation The Constellation X-Ray Missio

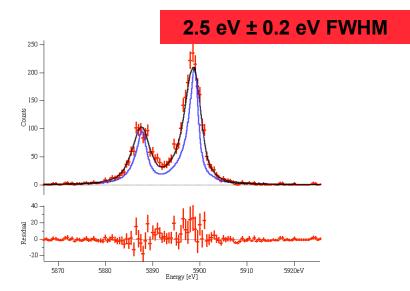
Spectroscopy X-ray Telescope (SXT)

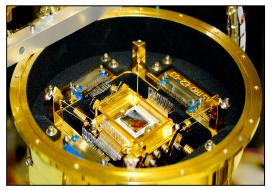
Trade-off between collecting area and angular resolution


- The 0.5 arcsec angular resolution state of the art is Chandra
 - Small number of thick, highly polished substrates leads to a very expensive and heavy mirror with modest area

Constellation The Constellation X-Ray Missio

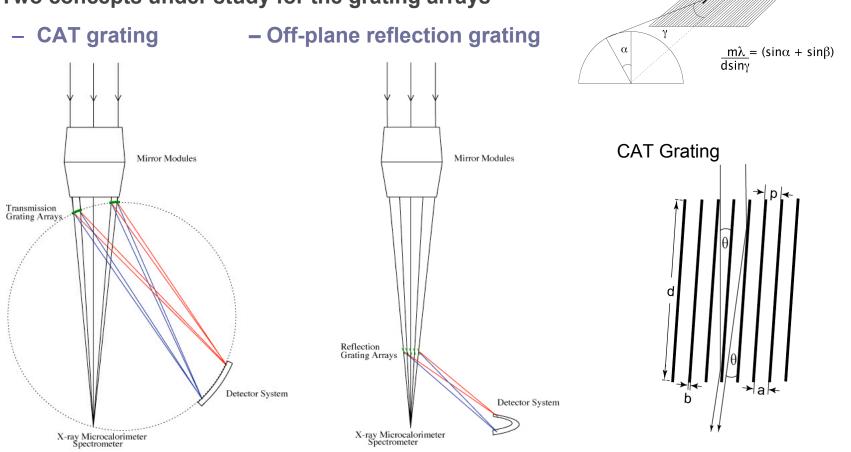
- Constellation-X collecting area (~10 times larger than *Chandra*) combined with high efficiency microcalorimeters increases throughput for high resolution spectroscopy by a factor of 100
 - 15 arcsec angular resolution required to meet science objectives (5 arcsec is goal)
 - Thin, replicated segments pioneered by ASCA and Suzaku provide high aperture filling factor and low 1 kg/m² areal density


X-ray Microcalorimeter Spectrometer (XMS)


- X-ray Microcalorimeter: thermal detection of individual X-ray photons
 - High spectral resolution
 - ΔE very nearly constant with E
 - High intrinsic quantum efficiency
 - Non-dispersive spectral resolution not affected by source angular size
- Transition Edge Sensor (TES), NTD/Ge and magnetic microcalorimeter technologies under development

Constellation X-Ray Missio

8 x8 development Transition Edge Sensor array: 250 μm pixels

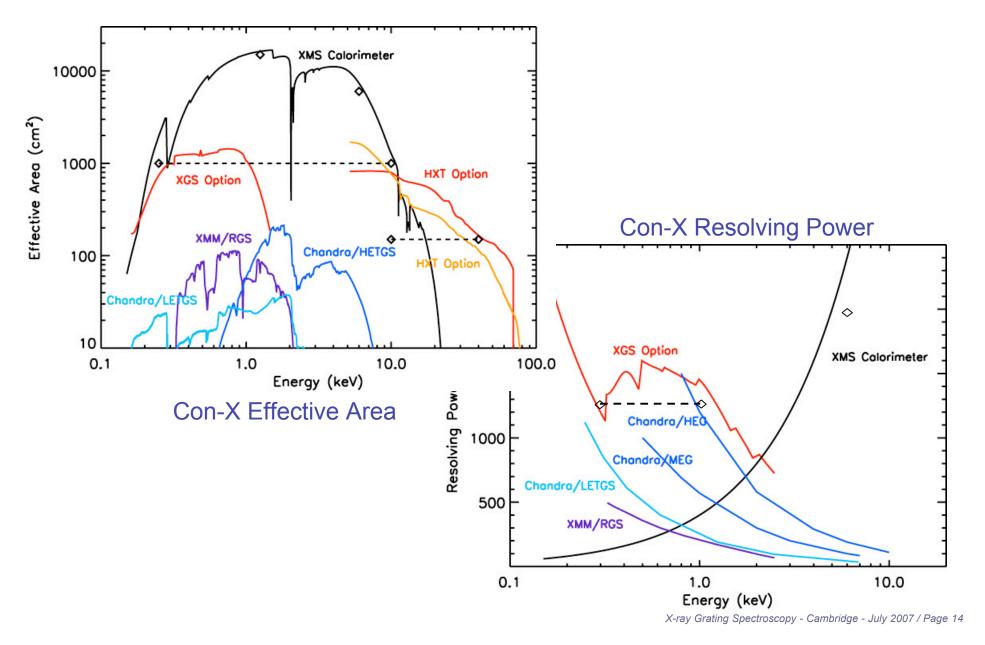


Suzaku X-ray calorimeter array achieved 7 eV resolution on orbit

X-ray Grating Spectroscopy - Cambridge - July 2007 / Page 12

X-ray Grating Spectrometer (XGS)

- XGS key requirements
 - Effective area >1000 cm² from 0.3 to 1 keV
 - Spectral resolving power 1250 over full band
- Two concepts under study for the grating arrays


X-ray Grating Spectroscopy - Cambridge - July 2007 / Page 13

Constellation X-Ray Missio

Off-Plane Grating

 α

Projected Performance

Constellation X-Ray Missio

Current Status

- Constellation-X is an approved NASA astrophysics mission, currently pre-phase A with the focus on technology development and optimizing the mission configuration
 - Recently completely a reconfiguration study that streamlined the mission configuration and maintained the science goals
- Constellation-X is the next major NASA astrophysics observatory, to follow after JWST (2013 launch), based on its ranking in the 2000 Decadal survey - budget wedge opens around 2009/2010 with 2017/18 the earliest realistic launch date
- A National Academy Review is currently examining the five Beyond Einstein missions (Con-X, LISA, JDEM, Black Hole Finder, Inflation Probe) to resolve conflicting advice between 2000 Decadal Survey and Quarks to Cosmos Academy reports and will recommend in Sept 2007:
 - which Beyond Einstein mission should be launched first, and
 - technology investments for the 2010 decadal survey

Constellation X-Ray Mission

Summary

- Constellation-X opens the window of X-ray spectroscopy with a two order of magnitude gain in capability over current missions
- ***** Two science goals driving the need for this new capability are:
 - Black Holes: precisions tests of GR in the strong field limit and determination of Black Hole spin in a large sample
 - Neutron Stars: Precision measurements of the mass-radius relation of neutron stars to determine the Equation of State (EOS) of ultra-dense matter
- Constellation-X based on extensions of flight proven optics and instruments
- Constellation-X is a Great Observatory that will enable a broad range of science that will engage a large community — Astrophysicists, Cosmologists, and Physicists through an open General Observer Program

http://constellation.gsfc.nasa.gov

Constellation X-Ray Mission