Relativity from Chandra to Constellation-X

MG11 - Saturday, July 29, 2006

 Michael Garcia, Smithsonian SAO Con-X Science Lead

Black Holes, Gravity, Dark Energy?

- Words from DETF 'It is not at present possible...to determine whether Λ, a dynamical fluid, or a modification to GR is correct explanation of the observed accelerating Universe ...any observational evidence for modifications of GR... may point the way toward understanding DE...[and have] far reaching implications for other fields of physics..'
- Gravity as described by GR has yet to be tested in the Strong Field limit
- Observations of Black Holes = Strong Field Gravity
- Will Review Key Chandra Results and Way Forward with Constellation-X

Constellation-X as the Successor to Chandra

CHANDRA has brought X-ray Imaging to <1" Comparable with typical optical/IR telescopes But most X-ray SPECTRA are still 'colors' typically N_H , Kt, equivalent of U/B/V – Except for the brightest sources with gratings, or VERY long exposures

Constellation-X will change this – Routine spectra with 300 < R < 3000 for tens of thousands of sources – $F_x \sim 10^{-15}$ ergs/cm²/s (0.25-2keV)

100 times throughput for R>300, AREA alone 40x Chandra, 20x XMM at Fe-K (strongest emission line)

The PHYSICS is in the Spectra!

Example:

Chandra and Cosmic X-ray Background Black Holes

Chandra has resolved the X-ray background into active galactic nuclei (AGN) with a space density of a few thousand per sq deg

- Constellation-X will gather highresolution X-ray spectra of the elusive optically faint black hole X-ray sources
- Chandra deep surveys have the sensitivity to detect AGN up to z~8

2 Megasecond Observation of the CDF-N (Alexander et al. 2003)

Chandra sources identified with mix of active galaxies and normal galaxies, many are optically faint and unidentified

• 100ks at 2 x 10⁻¹⁵ erg cm⁻² s⁻¹

Con-X simulations of faint z=1.06 "Type II QSO"

٠

Chandra BHs at high z

Chandra has detected X-ray emission from three high redshift quasars at z ~ 6 found in the Sloan Digital Sky survey

Flux of 2-10 x 10⁻¹⁵ erg cm⁻² s⁻¹ beyond grasp of XMM-Newton, Chandra or Astro-E2 high resolution spectrometers, but within the capabilities of Constellation-X to obtain high quality spectra

7

High resolution spectroscopy enables study of the evolution of black holes with redshift and probe the intergalactic medium of the early universe

Constellation-X Physics of high Z BHs

The high redshift universe of AGN

y red y_{red}

Chandra

Constellation-X will gather high quality spectra of these faintest X-rays sources that make up the X-ray background, like this z = 3.7 type II quasar discovered serendipitously by *Chandra*.

Black Holes – From Astrophysics to Physics

- Stage I Identify BH Candidates
 - ASM -> Chandra Pos/Spectra -> optical f(m)
 - Resolve Cosmic X-ray Background
- Stage II Confirm BH Candidates
 - Event Horizons (Chandra), Timing, Spectra
 - L /L_{Bondi} Radiatively inefficient flows
- Stage III Measure Spin of BH
 - Spectra, Timing (Chandra, XMM, RXTE -> Con-X)
- Stage IV Relate Spin to Penrose, BZ
 - Jets, Chandra, VLA, Con-X
- Stage V Quantitative tests of Kerr Metric
 - Doppler Tomography, Reverb Mapping, T<T_{ORB} Con-X

J McClintock

Chandra: Confirming Black Hole Candidates

Soft X-ray Novae in Quiescence

Black Holes

Narayan et al. 1997 Garcia et al. 2001

10

Event Horizons: Theory and Interpretation

٠

Bondi Accretion Rates in Nearby SMBH

•When RBondi resolved, accretion rate known

Chandra resolves in several nearby galaxies

Accretion must be radiatively innefficient – ADAF, CDAF, RIAF – all with event horizon

SgrA – Baganoff etal M31 – Garcia etal

Severe constraints

Secure accretion rate

III - SPIN: Chandra to Constellation-X

The Iron fluorescence emission line is created when X-rays scatter and are absorbed in dense matter, close to the event horizon of the black hole.

Theoretical 'image' of an accretion disk.

RELATAVISTIC Fe Lines in Stellar and SMBH

•After 1999 •GS 1354-645 •4U 1543-475 •XTE J1550-564 •XTE J1650-500 •GRO J1655-40 •GX 339-4 •SAX J1711.6-3808 •XTE J1720-318 •XTE J1748-288 •V4641 Sgr •XTE J1859+226 •XTE J1908+094 •GRS 1915+105 •Cygnus X-1 •XTE J2012+381

•<u>Prior to 1999</u> •GX 339-4 •Cygnus X-1 •V404 Cyg ??

J. Miller MG10

Streblyanskaya et al 2004 XMM Lockman Hole 0.8Ms

Spin via Fe Line Profile in BH Binaries

15

Spin Changes the Geometry of BH

J. McClintock M. Garcia, MG11

Constellation-X: Reverberation Mapping

Probes Stage III, IV, and V

Courtesy Chris Reynolds (UMD)

Strong Field GR tests. 'Snapshot' of Geometry - Derive: Mass, Spin, Geometry – $F_{\chi} \sim 5x10^{-11} \text{ ergs/cm2/s}(2-10)$ GR well tested in weak field – but not all of applicable parameter space. Technique used in OPTICAL at many R_s to estimate black hole mass

17

M. Garcia, MG11

Con-X: Spin via Doppler Tomography

- Orbital Time scale 10x Reverb Mapping: $F_X \sim 5x10^{-12}$ ergs/cm2/s(2-10)
- Follow dynamics of individual blobs in disk
- Quantitative test of orbital dynamics in strong field regime (STAGE V)

Armitage & Reynolds (2003)

Strong Field domain largely untested – most test utilize FFTs, time averaged line profiles.

Stage IV: Spin, Jet, AGN, Galaxy Coupling

 Black Holes clearly effect their environment: Feedback (jets, B-Z effect), M-σ – what are BH properties vs z?

Stage IV: Spin, Jet, AGN, Galaxy Coupling

Energy (keV)

Black Holes (AGN) peak at z~1.5, common 0<z<4

- Time averaged Fe profiles, calibrated by time-resolved, will allow:
- ✓ Investigate evolution of black hole properties (spin and mass) over a wide range of luminosity (F_X 10⁻¹¹ 10⁻¹⁴)and redshift (0<z<4)
- Use Line profile to determine black hole spin (a to 10%)

Cosmology (DE) with X-ray Obs of Clusters of Galaxies

We expect true $f_{gas}(z) = M_B/M_T$ values to be approximately constant with redshift. However, measured $f_{gas}(z)$ values depend upon assumed distances to clusters $f_{gas} \propto d^{1.5}$. This introduces apparent systematic variations in $f_{gas}(z)$ depending on the differences between the reference cosmology and the true cosmology.

SCDM ($\Omega_{\rm m}$ =1.0, Ω =0.0)

$CDM (\Omega_m = 0.3, \Omega = 0.7)$

Inspection clearly favours _CDM over SCDM cosmology. Steve Allen et al

X-ray Obs of Clusters of Galaxies: It works!

- Clusters CAN be used as 'standard' candles – kT, Fx, size -> Distance, 26 Chandra clusters Allen etal 2004 MNRAS
- SNIa distance systematics at ~7% (statistical = 13%, Riess etal 2004 gold sample 157 SN, z<1.8) Chandra clusters show NO systematics (yet) at 10% (or 5% gold) level.
- A large Con-X snapshot survey followed by deeper spectroscopic observations of relaxed clusters will achieve f_{gas} measurements to better than 5% for individual clusters:
 - Corresponds to Ω_M =0.300±0.007, Ω_Λ =0.700±0.047
 - For flat evolving DE model, $w_0 = -1.00 \pm 0.15$, $w' = 0.00 \pm 0.27$

X-ray Obs of Clusters of Galaxies: Beware Systematics

- Vikhlinin etal 2006
- T correlates with fgas
- Different set of clusters...
- Trend not obvious for T>5keV

- Allen etal 2006 in prep
- NO correlation of T with fgas
- Best fitting power-law model is consistent with a constant at 1σ
- Must select hot (>5keV), luminous(>10⁴⁵) clusters

Must select against systematics – ConX with R=1500 at 6keV, can do this by detecting non-virial motions (mergers, shocks), accurate T, mass measurements.

X-ray Obs of Clusters of Galaxies: It works!

Dark Matter

Hot Gas

X-ray emission is an excellent tracer of dark matter over a wide range of masses and redshift

Evolution of massive clusters with redshift is very sensitive to Cosmological parameters

The sources are luminous and relatively bright X-ray sources, easily found in wide field surveys (20-40 per sq deg at Con-X flux limits)

Provides precise Cosmological parameters, e.g. contours in the Ω_m and σ_8 space from Allen et al (2003):

- ROSAT+Chandra z<0.5 luminosity function (blue)
- Galaxy counts plus WMAP1 (black)
- WMAP1 alone (yellow orange)

The ~0.75 value of σ_8 recently confirmed with WMAP3

0.5

channel energy (keV)

Burwitz et al. 2003

0.2

 10^{-3}

ĽО

Ċ ×

5

M. Garcia, MG11

1

zavlin 12-Nov-2001 16:38

Constellation-X: Equation of State of Neutron Stars

The physical constituents of neutron star interiors remain a mystery. Constellation-X will finally provide the answers by determining the equation of state using multiple techniques: spectra and timing

10 eV EW absorption lines can be detected with Con-X in single bursts.

Constellation-X: Equation of State of Neutron Stars

Pulse shapes of burst oscillations encode information on the neutron star mass and radius.

- Modulation amplitude sensitive to compactness, M/R.
- Pulse sharpness (harmonic content) sensitive to surface velocity, and hence radius for known spin frequency.

Statistical limits from Constellation-X for even just a single burst will provide meaningful constraints on EOS.

Strohmayer (2003)

Constellation X-ray Mission Science Priority

The Astronomy and Astrophysics in the New Millennium (2000) decadal survey ranked Constellation-X priority next after JWST among large new space observatories

The National Academy Committee chaired by Michael Turner (2003) prepared a science assessment and strategy for research at the intersection of Physics and Astronomy strongly endorsed the Constellation-X mission

The National Academy Mid-Course Review (2005) Endorsed Decadal plan

Con-X can be Gracefully (re)-Scaled

- Con-X 'Lite'
- 3 Telescopes meet Area Requirements
- Grating Spectrometer -> Low-E/Hybrid Calorimeter, Innovative Grating?
- Hard X-ray Telescopes -> Multilayers?
- 100 kg, \$0.1B for science enhancement
- Savings of \$0.5B

Savings of \$0.5B vs 4 + 12 Tele + Gratins single s/c version

Minimum possible mission

Summary: Relativity from Chandra to Constellation-X

Chandra has brought X-ray imaging on par with that at optical wavelengths.Constellation-X will do the same for X-ray spectroscopy.

X-ray Background: Chandra Resolves, ~2/3 unknown Con-X will give X-ray IDs, z, spin, BZ Stage III, IV, V Dark Energy/Matter: Chandra measures $\Omega_{M}, \Omega_{\Lambda}$ Con-X will measure w, w' Coeval growth of BH and Galaxies: Chandra explains Cooling Flows Con-X will measure outflows, spin, mass, abundance, vs z, cosmic feedback? Stage III, IV, V

Backup/extra slides follow

•

F_{gas} from First Principles

Assume: Hydrostatic Equilibrium (must select virialized, relaxed clusters) Radiating (=baryonic)/Dark Matter constant and representative Then: Can measure relative D (~DE) and knowing fgas, absolute D (~DM) because x-ray measurements of fgas ~ D^{3/2}

