WHIM studies with IXO

T. Ohashi Tokyo Metropolitan U.

- Science of WHIM study
- Past and present WHIM study
- IXO prospect
- Other WHIM missions

With H. Kawahara (U. Tokyo) and Y. Takei (ISAS/JAXA

Thermal history of the universe

WHIM (warm-hot intergalactic medium) will tell us the evolution of the hot-phase material in the

Cosmic structur <u>WHIM</u> (10⁵-10⁷ K) traces the cosmic large-scale structure = "Missing baryon"

 \sim 5 dog at

Dark matter

IGM (10⁵-10⁷K)

Galaxies

Cluster gas (10⁷K)

Oxygen emission line

- The best tool to explore dark baryon or WHIM in emission.
- Good energy resolution is essential to separate the ~100 times stronger Galactic/interplanetary

Baryon phase

With X-ray absorption and emission lines, a wide area in the baryon phase space can be probed

> EDGE consortium

Recent XMM • Werner et al. 2008 Skl as bridge between A222 and A223 (z = 0.21), 15 Mpc long? • $kT \sim 0.9$ keV, $\delta \sim 150$, continuum only • Bregman & Lloyd-Davis 2008: N_{OVIII} at z=0favors Galactic halo rather than Local Group medium (But, line Doppler width shows $T_i > 10^{6.2}$ K and favors association

Suzaku search for WHIM A2142 (kT = 9 keV, z =

- 0.0909) offset regions
- BGD was taken at 1.4° off
- At r₁₈₀ from A2142 (90% statitical error)
 - OVII: 7.1± 3.7× 10⁻⁸ cm⁻²s⁻¹amin⁻²
 - OVIII: 9.2± 5.3× 10⁻⁸ cm⁻²s⁻¹amin⁻²
- OVII flux implies $\delta = 250 \pm 130$

 $(0.1Z_{\Box}, L = 2 \text{ Mpc}, 2 \times 10^{6} \text{K})$

However, systematic error

Summary of Suzaku

Suzaku upper limits on Oxygen lines are factor of 3 -5 lower than the XMM "detection".

- Understanding the spectrum of Galactic emission is most important
- Detector background and solar wind process also cause significant effect on oxygen measurement

Summary of Suzaku WHIM study

- WHIM or missing baryons carry important science about structure formation and chemical/thermal evolution of the universe
- Its detection is a challenge for X-ray astronomy
- Suzaku is giving fairly low upper limits (δ < 300) , but actual density around clusters is δ ~100
- Suzaku may be able to find dense clamps of WHIM in cluster outskirts and in superclusters, which will be the first signature of WHIM

Expectation from IXO (XEUS) • Kawahara et al. 06 computed the

- Kawahara et al. 06 computed the mock transmission spectra of the WHIM based on hydrodynamic simulation data.
 - a light-cone output for 0 < z < 0.3
 - mock spectra for a bright source
- Cosmological Hydrodynamic
 Simulation (Yoshikawa et al. 01)
 - PPPM/SPH (128³ DM and gas particles, L_{box} = 75h⁻¹ Mpc)

•
$$\Omega_{\rm m} = 0.3, \, \Omega_{\Lambda} = 0.7, \, \Omega_{\rm b} = 0.015 h^{-2}$$

OVII: *z*=0.26-0.30, 5

 $h = 0.7, \sigma_8 = 1.0000 \text{ cm}^2 (\text{XEUS}) \rightarrow 30000 \text{ cm}^2$

Simulated spectra

 $N_{\rm OVII} = 1.3 \times 10^{15} (EW / 0.1 \, {\rm eV}) \, {\rm cm}^{-2}$

Background AGN $F_x = 7 \times 10^{-12} \text{ erg cm}^{-2}\text{s}^{-1}$ (0.1-2.4 keV) 60 ksec observation with IXO calorimeter EW = 0.05 eV detectedat 3σ

Number of QSOs with $F_x > 7 \times 10^{-12}$ cgs in 0.1-2.4 keV ~60 in z > 0.1<u>~20 in z > 0.3</u>

Kawahara et al.

Number of WHIM clouds

Expected number of absorption systems per LOS

EW > 0.05 eV $(S/N \ge 3\sigma \text{ with }Fx > 7 \times 10^{-12} \text{ for }60 \text{ ksec }IXO)$ OVII (574 eV)1.71OVIII (654 eV)0.43OVII and OVIII

With 60 (600) ksec observation of 20 bright AGNs at z > 0.3, 8 (~30) clouds will give us joint detection of OVII and OVIII lines

Significances

E _{line} (eV)	lon	Z	Calor i	Gra (σ)	Width (eV)	EW (eV)	Cloud # in z=0-0 3
445	OVII	0.2 9	14	4	1.2	0.16	0.1
507	OVIII	0.2 9	7	2	1.0	0.09	0.1
514	OVII	0.1 2	8	5	0.3	0.1	0.3
585	OVIII	0.1 2	7	4	0.5	0.12	0.05

Calorimeter gives better sensitivity, because lines have width.

Combination of two instruments give constraint on

Combination of Grating and Calorimeter

$S/N \propto \sqrt{N/\Delta E}$

- N = number of photons $N_{\text{Calori}}/N_{\text{Grating}} \approx 3 \times 10^4 \text{ cm}^2/1500 \text{ cm}^2 = 20$ $\Delta E_{\text{Calori}}/\Delta E_{\text{Grating}} \approx 2 \text{ eV}/0.1 \text{ eV} = 20$
- The two instruments offer <u>similar S/N</u> ratios
- Lines can be broad (100 km s⁻¹ $\rightarrow \Delta E = 0.2 \text{ eV}$)
- Calorimeter is sensitive in most cases, but line profile and separation of contaminating lines with grating can

WHIM in non equilibrium state R = F(OVIII)/F(OVII)

- Filaments are generally in the process of heating, so OVII line is relatively stronger than the CIE case (blue)
- If the region is immediately after a shock heating, OVIII line is stronger (red)
- Simulation should include these effects

Yoshikawa & Sasaki (2006)

Probed fraction

- EW = 0.05 eV (~60 ksec observation): 20-30% of baryons can be probed
- 10 times longer exposure probes ~50% of baryons
- OVII absorption can detect WHIM with T <

WHIM with IXO

- Definitely a big jump from Chandra and XMM-Newton capabilities (with ~300 times jump in the area)
- Calorimeter is more sensitive for most cases, but combination of calorimeter and grating spectrometer may be useful in constraining WHIM motion in some cases
- Long (~ 600 ksec) observations of bright AGNs will be worth consideration

XENIA/EDGE and **DIOS**

- TES calorimeter array with 1024 pixels
- <u>DIOS</u> (Diffuse Intergalactic Oxygen Surveyor, Japan) ... small mission ~400 kg
- <u>EDGE</u> (Explorer of Diffuse emission and Gamma-ray burst Explosions) ... medium size ~2000 kg ⇒XENIA (Kouveliotou, Piro, den Herder) for US proposal
- Launch: 2015 or later
- Very wide field of view (~ 1deg) with 4-reflection X-ray telescope
- Energy range < 2 keV</p>

DIOS: Japanese small satellite

EDGE/XENIA: US-Europe-J

Incident

5 deg x 5 deg at z = 0.2 (60 Mpc)

Expected results

- 0.1-1 Msec exposure with EDGE/XENIA (SΩ ~ 1000 cm² deg²) gives significant detection of WHIM filaments
- Combined detection of OVII and OVIII lines suppresses spurious features
- EDGE/XENIA has capability of absorption measurement against GRB afterglow → density and depth of the filament

OVII & OVIII >

Combined measurement with Xenia

- WHIM absorption measured after ~1 min from GRB onset
- Later, emission lines from the same region will be measured
- Density, ionization state, line of sight depth of

END

2

Dark matter

Galaxies (~10⁴

Yoshikawa et
al.2001:IGM (10^{5-7} K)Clusters (10^{7} K)
al.2001:Warm-Hot Intergalactic Medium= dark baryonWHIM with $10^{5} - 10^{7}$ K traces the large scale structureWHIM with $kT > 10^{6}$ K produces OVII and OVIII lines

n

1

Colleagues

 Y. Takei (ISAS/JAXA), S. Sasaki (TMU), K. Yoshikawa (Tsukuba U), Y. Suto (U. Tokyo), C. Kouveliotou (MSFC), L. Piro (ISAF-Rome), J.-W.

DIOS Project

Expected launch ~2015

重量	全体	~ 400 kg	
	観測系	~ 200 kg	
大きさ	打ち上げ	1.2×1.45×	
	中 山 山 山	1.4 111	
	軌迫上	5.9×1.45×	
		1.4 m	
姿勢	制御	3- 軸制御	
	精度	≦30 秒角	
電力	全体	600 W	
	観測系	300 W	

DIOS の性能

酸素の輝線で広大な WHIM をマッピング観測

入射スペクトル

観測のシミュレーション

- 数 Msec の観測を想定
- 約100倍強い銀河系輝線を、
 エネルギー分解能で分離
- OVIIとOVIIIの両方の輝線を測 ることで信頼性向上
 - ▶ 大構造フィラメントに沿う密度 の高い領域を**検**出できる

5 deg x 5 deg at z = 0.2 (60 Mpc) OVII & OVIII > 3*o* る~100: バリオン全体の 20% 近くを検出

Xenia計画

- DIOS を拡張、WHIMの放射と 吸収を観測
- 来年米国の Decadal Survey へ PI=C. Kouveliotou (MSFC) で 提案。2018 頃の打ち上げを目 指す
- γ線バースト発生後1分で補足
- 米国、イタリア、オランダ、日 本が中心
- 4回反射ミラー、TES カロリメ ータ、冷却系は DIOS の拡張モ デルを搭載。カロリメータの面 積は DIOS の 3-9 倍。重量約 2

ダークバリオン攻略への道

まとめ

- 小型衛星 DIOS(~2015 年) はダークバリオ ン探索の先陣を切るミッション
- 大型天文衛星に無いユニークな性能で、銀河の高温ガスや銀河団ダイナミクスにも大きく 貢献
- Xenia(~2018 年) で感度をあげ、放射・吸収の両面から、WHIMの構造を物理状態を
 詳しく観測

■ 面積 3 万 cm² の IXO (XEUS+Con-X、 ~2020 年) で、吸収線観測は大幅に

淮展