Evolution of the dark matter distribution on galaxy cluster scales

Gabriel W. Pratt

MPE

"How did the Universe originate and what is it made of?"

ESA Cosmic Vision document

Clusters of galaxies are dark matter dominated

5% Galaxies

10-15% Intracluster medium (ICM)

$$T \sim 10^{6} - 10^{8} \text{K} (1 - 15 \text{ keV})$$

$$n_{e} \sim 10^{-4} - 10^{-2} \text{ cm}^{-3}$$

$$Z \sim 0.3 Z_{\odot}$$

80-85% Dark matter*

*First postulated by Zwicky (1933)

Coma cluster X-ray/optical overlay

Universal density profile of cold dark matter haloes

$$\rho_r = \frac{\rho_c(z)\delta_c}{(r/r_s)(1+r/r_s)^2}$$
$$\delta_c = \frac{200}{3} \frac{c^3}{[\ln(1+c) - c/(1+c)]}$$

$$r_{\delta} = c_{\delta} r_s$$

Dark matter halo concentration

Reflects background density of Universe at epoch of halo formation

- Decreases with M
- Decreases with z $c(M,z) = A \left(\frac{M}{M_0}\right)^{\beta} (1+z)^{\alpha}$
- 20% dispersion in c at given M
- Depends on cosmology

X-ray mass measurement

Assume spherical symmetry, hydrostatic equilibrium

Integrate NFW: $M(r) = 4\pi \rho_c(z) \delta_c r_s^3 m(r/r_s)$ Suto et al. 1998 $m(x) = \ln(1+x) - x/(1+x)$

Current constraints

Scaled total mass/density profiles Regular systems (z < 0.2), assume spherical symmetry, HE

Pointecouteau, Arnaud & Pratt 2005 (also Pratt & Arnaud 2005; XMM, regular)

Lewis & Buote 2003 (Abell 2029)

Dark matter constraints: c - M relation Quantitative test of CDM scenario

Pratt & Arnaud 2005; Pointecouteau, Arnaud & Pratt 2005 (XMM, relaxed) Vikhlinin et al 2006 (Chandra, relaxed) see also: Gastaldello et al. 2007, Buote et al. 2007, Humphrey et al. 2006, Schmidt & Allen 2007

Dark matter constraints: c - M relation Extension to lower masses

Dark matter constraints: c - M relation Extension to lower masses

Cosmological constraints

z < 0.2 0.7 < kT < 12 keV

Theoretical predictions WMAP3 cosmology Ω_M =0.24, Ω_Λ =0.76, σ_8 =0.76

Incompatible with WMAP3

 $\sigma_8 > 0.8$ at 99%

Buote et al. 2007; Chandra/XMM

Evolution of c - M relation

Schmidt & Allen 2007; Chandra

kT > 5 keV 0.1 < z < 0.7

- No evolution

- *c*-*M* relation steeper than expected?

Future progress

Sample requirements

- Morphologically relaxed
 - Essential for HE assumption (calibrate non-HE from velocity broadening)
 - eROSITA survey
 - (Ideal sample for calibration of mass-observable relations)

- Wide mass/temperature range

- leverage on c(M)
- (0.3 15 keV / $10^{12.5} 10^{15} M_{\odot}$, i.e., galaxies \rightarrow rich clusters)
- -Wide z range (z > I)
 - essential for evolution of *c*-M
- Many objects (100s)
 - essential to constrain $\sigma(c(M,z))$

Optical coverage for stellar mass estimation and lensing
 Synergy with PanSTARRS, DES, etc

Technical requirements

- High throughput
 - I keV group flux ~ 10^{-16} erg cm⁻² s⁻¹ at z~I
- Low background

- group and cluster outskirts are background limited ($S_X \propto R^{-2} \rightarrow R^{-3}$)

- High spatial resolution (< 5")
 central regions of distant systems (resolution and AGN effects)
- Large FoV

- for mapping extended emission in nearby systems $(R_{500} > 15')$

Conclusions

- Dark matter distribution and its evolution critical test of:

- current structure formation paradigm
- nature of dark matter

- X-ray observations give us the best means to measure this accurately on cluster scales

- Current constraints weak
- IXO will usher in a new era