The IXO Wide Field Imager

IXO Science Meeting

MPE Garching, 16.9.2008

Content

- DEPFET devices
- Prototypes
- ✤ WFI requirements
- ✤ WFI concept
- Outlook

J. Treis, O Hälker, S. Herrmann, M. Porro, G. Schaller, F. Schopper, L. Strüder Max-Planck-Institut f. extraterrestr. Physik

DEPFET devices

The DEPFET concept

DePFET

- DEpleted-P-channel FET
- ▷ Sidewards depleted device
- ▷ p-channel MOSFET on depleted n-bulk
- ▷ Additional deep-n implantation underneath Gate
- Potential minimum for electrons below FET channel (*internal gate*)
- Bulk generated electrons are collected in internal gate
- ▷ Modify transistor channel conductivity
- > Transistor current modulation 300 pA/el.
- ▷ Internal gate has extremely low capacitance
- ▷ Backside can be used as entrance window
- ▷ 100 % fill factor
- ▷ Taylored QE to respective experiment

Imul utdap

5

width [um]

Why use DEPFETs?

- Combined sensor / amplifier structure
 - Low capacitance (20 fF) and noise
 - s excellent spectroscopic performance
 - ▷ Complete clearing of signal charge
 - no reset/ktC noise
 - ▷ Charge storage capability
 - selective readout on demand / windowing
 - \triangleright Non-destructive readout
 - potential of repetitive readout
 - ▷ Backside illuminated, fully depleted
 - quantum efficiency
 - ▷ Fast readout
 - low deadtime
 - high framerate
 - Low power
 - Only "read" pixels consume power
 - \triangleright no charge transfer
 - radiation hard
 - no charge transfer,
 - no out-of-time-events

MPI albleiterlabo

Measurement of signal

- Measure signal levels
 - source potential / drain current
- Measure both before and after clear
- Calculate the difference
 - correlated double sampling (CDS)

- Level acquisition
 - N-fold CDS
 - Sample current / voltage level N times
 - Trapezoidal shaping
 - Integration / deintegration

DEPFET matrix devices

Readout scheme

- Global drain contact
- Gate,Clear and Cleargate connected row-wise
- Sources connected column-wise
- Only one row is turned on and read out

Source follower readout

- Column bias by current source
- Alternatively: Conversion of drain current

Target:

- ✤ Framerate 1 kHz
- Array dimension 1024 x 1024
- Energy resolution < 125 eV FWHM @ 5.9 keV

2 ASICS required:

- Analog Amplifier ASIC
- Switcher ASIC

MPI lalbleiterlabo

Switcher ASIC

Current SWITCHER IIb:

- ✤ 64 channels
- Sequential switching row-by-row
- Only passive (resistive) driving circuitry
- ✤ Low noise (!!)
- Fast, high voltages (20 V)
- Not sufficiently radiation hard

- New SWITCHER VI:
 - ✤ Same as SWITCHER IIb, but
 - Radiation hard (300 krad est.)
 - Channel sequencer
 - Lower power consumption
 - Improved testability & diagnosis

XS devices

Small prototype:

- 2 prototyping productions, PXD04 and PXD05 were successfully finished
- Devices with extremely good properties
- Formats: XS (XEUS small): 64 x 64 pixels of 75 x 75 μ m² size
- > Geometry: W = 47 μ m, L = 5 μ m
- > Sensitivity $g_Q = 300 \text{ pA} / \text{e-}$
- > Many devices have been successfully operated
- > Many design variants
- "Workhorse" for design evaluation & test

Microphotography of DEPFET pixel within matrix environment

XS performance

- 132 eV FWHM energy resolution @ 5.9 keV
- Readout noise ~ 3.5 e- ENC
- Very good Offset and Gain homogeneity (< 5%)
- Very good device yield: > 90 %
- Defective devices mostly due to cosmetic defects in single pixels (i.e. pixel yield even higher)

- Performance limitations due to peripheral constraints (old CAMEX device)
- Temperature ~ -40 °C
- Framerate ~ 500 Hz
- Line processing time ~ 25 μ s
- Linearity correction required

XL devices

Larger prototypes:

- Larger prototypes on PXD05
- > XL (XEUS Large) format
- \blacktriangleright 256 x 256 pixels of 75 x 75 μ m²
- > 1.9 x 1.9 cm² sensitive area
- Uni- and bidirectional readout
- Factor of 16 in area an pixel count compared to XS

- Study yield and homogeneity of large area matrix devices
- Bidirectional readout: Data acquisition and fame building
- Commissioning in progress

XXL devices

- Also on PXD05: Sector prototypes for WFI
- XXL (XEUS X-Large) format
- \geq 128 x 512 pixels of 75 x 75 μ m²
- Unidirectional readout
- Same area & pixel count as XL
- Same setup as XEUS sector (capacitance etc.)

lalbleiterlabo

- Study timing behaviour of WFI on device with realistic device
- Commissioning in progress

DEPFET Macropixel devices

- Macro Pixel Detector (MPD)
 - Combined heritage of SDD & DePFET
 - I large area & low noise
 - Common backside diode & bulk
 - thin entrance window
 - fill factor 1
 - ▷ Arbitrary scalable pixel size
 - Adjust geometry & number of driftrings
 - Pixel sizes up to ~ mm possible
 - \triangleright Readout scheme & specs
 - same as for "normal" DEPFETs

Demonstrator pixel layout screenshot Demonstrator pixel status 18.06.07

MIXS devices

• Flight detectors:

- FPA flight sensors for MIXS on BC
- Same area as XL (XEUS X-Large)
- \blacktriangleright 64 x 64 pixels of 300 x 300 μ m²
- > Macropixel device
- Bidirectional readout
- First DEPFET based sensor to undergo space qualification program

Commissioning in progress

SX devices

- SX quadrant prototypes:
 - Also on PXD05: SX sensor quadrant prototypes
 - > 3.2 x 3.2 cm² sensitive area
 - \blacktriangleright 64 x 64 pixels of 500 x 500 μ m^2
 - > Macropixel device
 - Unidirectional readout
 - Parallel readout prototypes

- Operational devices have been tested
- Excellent properties
- SX FPA will be wafer scale device!

60 -50 50000 10³ 40 162500 Row number counts / adu 10² 275000 30 -387500 10 20 500000 10 -0 20 30 40 50 60 10 Column number

- 127 eV FWHM energy resolution @ 5.9 keV (single events)
- Excellent peak / background
- Readout noise ~ 3.5 e- ENC

- Few samples built so far
- Homogeneity comparable to XS devices
- No cosmetic defects

Sensor development roadmap

Current status:

- Factor of 16 to go to final WFI area
- Next prototyping run yields another factor of 8 in area
- WFI Quadrant prototypes

- Challenges:
 - ➢ Large area...
 - > ...and (!!) large pixel count!
 - BC / MIXS: Qualification process
 - ➢ SX / LEDA: Large area
 - > IXO WFI: Full array dimension!

Sensor area roadmap

Pixel count roadmap

The DEPFET based WFI

WFI requirements

- Specifications
- Field of view (min.)
 > 12 arcmin Ø
 > 7.2 cm Ø
- Angular resolution
 <u>s</u> 5 arcsec @ 20

m

- Point spread function
 500 µm
- Good QE
- Energy range
 0.1 ... 15 keV
- Energy resolution
 - < 130 eV @ 6 keV
- Count rate capability
 10 kcps
 - < 1% pileup
- Hard X-ray camera option
- Compliance with

- WFI requirements
 - Detector format

•

- 1024 x 1024 pix
- 14 arcmin @ 25m
- 18 arcmin @ 20m
- Pixel size
 100 × 100 μm²
 75 × 75 μm²
- Thin entrance window
- Detector thickness
 450 μm
- Low electronic noise
 « 4 el. ENC
- Fast readout
 2 µsec / pixel-row
- Window mode
 32 x 1024 pixel
- Monolithic device Johannes Treis MPI Halbleiterlabor

WFI concept

- Current baseline:
 - > WFI will consist of monolithic device integrated on 6" wafer
 - \succ Wafer thickness of 450 μ m is proposed

Impact of device thickness

Device thickness

- Lower absorption cross section for higher eneries
- ~12 keV for 0.5 mm thickness
- ~17 keV for 1 mm thickness
- ~21 keV for 2 mm thickness
- Improvement small

WFI concept

Current baseline:

- WFI will consist of monolithic device integrated on 6" wafer
- > Array dimension: 1024 x 1024 pixels
- \succ Pixel size of ~75 x 75 μ m²
- Device will occupy an area of about ~ 86 x
 86 mm² (including service areas)

"Dead" area. May be shaped according to requirements

WFI concept

- Current baseline:
 - WFI will consist of monolithic device integrated on 6" wafer
 - Array dimension: 1024 x 1024 pixels
 - \blacktriangleright Pixel size of ~75 x 75 μ m^2
 - Device will occupy an area of about ~ 86 x
 86 mm² (including service areas)
 - Pixel size of up to 100 x 100 μ m² could be accommodated on a monolithic device on a 6" wafer for given array dimension
 - > Edge regions require special care!
 - Even larger pixels possible, but:
 - > monolithic approach has to be abandoned
 - Complete revision of entire FPA concept

Entrance window configuration

Entrance window

- ✤ Compromise between:
- ✤ UV shielding
- Shielding is required:
 - **Straylight**
 - Visible stars
- Quantum efficiency in the energy range E > 0.05 keV
- QE loss also due to (external) filters
- Monolithic implementation has mechanical advantages

albleiterlabo

WFI concept

- Current baseline:
 - Sensor will be electrically divided into two hemispheres and 16 sectors
 - Division is purely electrical, affects only r/o
 modularities and (possibly) supply redundancies
 - Common entrance window homogeneous & without dead regions
 - Hemispheres are read out in parallel (factor 2 in parallelization)
 - > Processing time ~ 2 μ s / row

WFI concept

Current baseline:

- Readout ICs are mounted on multilayer readout ceramics
- ✤ 1 CAMEX IC per sector
- All sectors of a hemisphere share same switcher ICs
- Total of 16 CAMEX ICs with 128 channels per IC
- Total of 16 SWITCHER ICs with 128 channels per IC (optional 32 x 64 channels as fallback solution)
- Control & configuration can be made redundant
- Multilayer ceramics is contacted with 2
 Flexleads carrying the (optionally redundant)
 control & config signals as well as the supply
 voltages and analog output signals

Readout modes:

- Full frame mode: Parallel readout of both hemispheres on full width
- ROI mode: Define ROI, read out repetitively with high framelet rate
- Information of entire row is acquired, but information from outside ROI is discarded in preprocessing
- Arbitrary position anywhere on the sensor
- Simultaneous readout of disjunkt ROIs on different hemispheres
- > With next generation of ICs:
- On-the-fly selection of ROIs / switch between ROIs
- ROIs exceeding sector borders

Readout modes:

- Full frame mode: Parallel readout of both hemispheres on full width
- ROI mode: Define ROI, read out repetitively with high framelet rate
- Information of entire row is acquired, but information from outside ROI is discarded in preprocessing
- Arbitrary position anywhere on the sensor
- Simultaneous readout of disjunkt ROIs on different hemispheres
- > With next generation of ICs:
- On-the-fly selection of ROIs / switch between ROIs
- ROIs exceeding sector borders
- Window mode: Acquire fully sized window

strip (anywhere on FPA) repetitively

Read rest of frame with reduced framerate

Readout modes:

- > Window mode: Acquire fully sized window
 - strip (anywhere on FPA) repetitively
- Read rest of frame with reduced framerate
- Different ROIs on arbitrary positions on FPA

MPI Halbleiterlabo

Readout modes:

Window mode: Acquire fully sized window

strip (anywhere on FPA) repetitively

- Read rest of frame with reduced framerate
- Different ROIs on arbitrary positions on FPA

MPI Halbleiterlabo

Readout modes:

- Window mode: Acquire fully sized window strip (anywhere on FPA) repetitively
- Read rest of frame with reduced framerate
- Different ROIs on arbitrary positions on FPA
- Even different non-overlapping ROIs on same Hemisphere possible (subsequent readout)

albleiterlabo

Readout modes:

- Window mode: Acquire fully sized window strip (anywhere on FPA) repetitively
- Read rest of frame with reduced framerate
- Different ROIs on arbitrary positions on FPA
- Even different non-overlapping ROIs on same Hemisphere possible (subsequent readout)

MPI albleiterlabo

Readout modes:

- Window mode: Acquire fully sized window strip (anywhere on FPA) repetitively
- Read rest of frame with reduced framerate
- Different ROIs on arbitrary positions on FPA
- Even different non-overlapping ROIs on same Hemisphere possible (subsequent readout)

MPI albleiterlabo

Readout modes:

- Window mode (cont.): Acquire fully sized window strip (anywhere on FPA) repetitively
- Read rest of frame with reduced framerate
- Different ROIs on arbitrary positions on FPA
- Even different non-overlapping ROIs on same Hemisphere possible (subsequent readout)

albleiterlabo

System

- + + + + + + MPI Halbleiterlabor
- System components:
 - WFI APS (2 redundant hemispheres)
 - Hemisphere preprocessor, consisting of 4 ADC clusters containing 4 ADCs each and one framelet builder FPGA
 - ✤ Frame builder FPGA
 - Imager control unit with housekeeper microcontroller, sequencer
 FPGA and slow control and configuration unit
 - Power supply units for the various subcomponents
 - Only sensor hemispheres are at "cold" temperatures. Required cooling power ~ 22 W (est.)

Mechanics & services

Mechanical design

- Current concept based on SX & XEUS heritage
- Preliminary design exists

WFI performance

- Specifications
- Field of view (min.)
 > 12 arcmin Ø
 > 7.2 cm Ø
- Angular resolution
 <u>s</u> arcsec @ 20

m

- Point spread function
 500 µm
- Good QE
- Energy range
 0.1 ... 15 keV
- Energy resolution
 < 130 eV @ 6
 keV
- Count rate capability
 10 kcps
 - < 1% pileup
- Hard X-ray camera option
- Compliance with

- WFI requirements
- Detector format
 - 1024 x 1024 pix
 - 14 arcmin @ 25m

18 arcmin @ 20m

- Pixel size
 100 × 100 μm²
 75 × 75 μm²
- Thin entrance window
- Detector thickness
 450 μm
- Low electronic noise
 « 4 el. ENC
- Fast readout
 2 µsec / pixel-row
- Window mode
 32 × 1024 pixel
- Monolithic device Johannes Treis MPI Halbleiterlabor

- WFI properties
- Min. max. pixel size
 24 × 24 μm²
 500 × 500 μm²
- Thin entrance window
 for E > 50 eV
- Integrated optical blocking filter for E < 50 eV

MPI Halbleiterlabor

- Detector thickness 450 µm
- Low electronic noise « 3.5 el. ENC A E < 130 eV (FWHM)
- Fast readout
 2 μsec / row ~ 1000 frames/s
- Window mode 32 × 1024 pixel ~ 32 µs/"framelet"
- Monolithic device
- Low power
 - ~ 16 W
- High temperature ≥ -40 °C

WFI options

MPI Halbleiterlabo

WFI options

IXO WFI Collaboration

+ + + MPI Halbleiterlabor

Potential WFI Team:

MPE, Garching, IAATGermanyLU, LeicesterUKPolitecnico di Milano,ItalyCAS, Tsinghua UniversityChinaPNSensor GmbHGermanyUniversity of OsakaJapan

US teams are welcome