IXO Science Team Meeting September 17-19, 2008 Garching/MPE

IXO Project Update Mission Design Lab Summary

Jay Bookbinder

Outline

- Mission Design Parameters
- Payload complement
- Observatory Configuration
- Mission Configuration
- Issues and Summary

IXO Mission Design Lab Study

Configuration Definition

- Investigated mission options for deployable metering structure
- Defined strawman parameters and payload
- Developed error budget and plans for 5 arcsec angular resolution
- Study Focus:
 - 20 m focal length
 - 3.3 m diameter flight mirror assembly (slumped glass mirror technology)
 - Instrument complement consisting of Microcalorimeter/NFI, Wide Field Imager (WFI)/Hard X-ray Imager (HXI), X-ray Grating Spectrometer
 - Atlas V 551 launch vehicle
- Mission concept appears viable with positive margins
 - Provides "proof-of-concept" for extensible bench mission configuration

Strawman Payload Summary

Single Flight Mirror Assembly (FMA)

- 20 m focal length

Four instruments

- X-ray Microcalorimeter Spectrometer (XMS)
 - Covers 0.6 to 10 keV
- Wide Field Imager (WFI)
 - Covers 0.1 to 15 keV with large FOV
- Hard X-ray Image (HXI)*extends the WFI bandpass to 40 keV
 - Assumed detector head within WFI envelope
- X-ray Grating Spectrometer (XGS)
 - Dispersive from 0.3 to 1 keV
 - Two grating arrays mount to aft of FMA
 - CCD camera for readout on fixed instrument platform

<u>Note</u>:

* Response by the FMA for this particular design does not meet desired level for high energies.

Mission Effective Area

- Flight Mirror Assembly
 - 3.3 m overall outer diameter (3.2 m largest diameter on optical surface)
 - 20 m focal length

International X-ray Observatory [XO]

IXO Observatory – Optical Rays

Spacecraft Bus

- Components mounted on Spacecraft Bus Top, Side, and Bottom Decks
 - Side panels hinged, open as "doors"
- Spacecraft Bus houses most of the Spacecraft Subsystem components
 - Attitude Control
 - 5 reaction wheels in biased arrangement
 - Propulsion
 - 5 tanks total
 - 12 5-n thrusters
 - Thermal

NASA

eesa Jaka

- Traditional thermal control (heatpipes, louvered
- Electrical Power
 - 50 Ah Lilon battery

- Command and Data Handling
 - Ka-Band for science (gimbaled 0.7 m HGA)
 - one 30 minute contact /day 26Mbps
 - S-Band omni
 - 300 Gb storage

Deployable Metering Structure

- Concept studied utilizes three deployable masts for extensible structure
 - Feasibility verified with NuStarlike mast
- Deployable Telescope Shroud provides thermal protection, light-tight environment
 - Pleated shade type construction
 - Multilayer blanket with Kapton outer skin provides micrometeroid protection
- Two X-ray baffles attach to Shroud
 - Mylar with tantalum foil

eesa Jaxa

NASA

 Harness between instruments and spacecraft bus deploys within mast system

Fixed Metering Structure and Optics Module

- Advanced Grid Stiffened composite (a.k.a. "isogrid") structure provides stiff lightweight primary structure
 - Same technology as Boeing 787 Dreamliner Sized for >10 Hz in launch configuration
- UltraFlex solar array positioned to minimize Center of Pressure to Center of Mass (CP-CM) offset
- FMA outer and inner covers w/ one time removal after Observatory outgassing

FMA to Spacecraft Interface

- FMA interfaces to the top flange of the Spacecraft Adapter Ring in 6-24 points. Six point FMA design shown here.
- FMA bolts through the flange of the spacecraft adapter at a bolt circle diameter of ~3448mm.
- Assume flange is flat within .030".

IXO Instrument Module

- XMS and WFI/HXI with pre-amp electronics mount on Moveable Instrument Platform
 - Focus adjust mechanisms on each instrument for initial adjustment on-orbit
- XGS CCD mounts to Fixed Instrument Platform (FIP)

eesa

 Support structure provides proper interface to Rowland circle and baffle

Mission Overview – Atlas LV

Mission Life and Sizing

- Class B Mission, no performance degradation w/ single point failure
- Mission Life: 5 years required, 10 years goal, consumables sized for 10 years

Launch

- Launch on an Atlas V 551 medium fairing from KSC on 12/2020
- Throw mass ~6342 kg (w/o Payload Attachment Fixture)
- Direct launch into an L2 800,000 km semi-major axis "zero Insertion delta-v" halo orbit
- 100 day cruise to L2

Mission Orbit

- At insertion, perform a maneuver to lower the Y amplitude to 700,000 km
- Total lonizing Dose (10 yrs): 27 kRad; severe Environment for Single Events Effects; micrometeoroid protection required

Orbit Considerations

TELT-13450000	CT-D-12-DEALBOR	CTTLT - 12 AND AND	TELT - LARSE	ELI- LAIMAM			LAN MAR
Court = 4.358.2500 arc	Court - 132 828 arc	Court + 430 800 rec		Court = 4200 000 arc		Court - 4350100 Hr	TILT - LASS ST CO
	Halo			Carri - 330100 pr	Grbits	Cracl + 2003.00 per	
7 300 30 cr	Orbits	Contra Cont	Cost + 300 000 pr	Coart - 2000 Dool are	Cost • 200100 ns	Case - 200100 ar	Court = \$7001000 err
Cont - 124500	TTLT - 1: 3383.900	Court = 3226.000 mm	1712.7 + 13.00.000 doto Crass + 3.75(4.000) rec		Cente - 2759.000 are	Crust = 37:01.00 Fez	
722,7 - 12.5.4 40.400 Deart - 3000.000, per		178.7 - 124490.000 Deal - 3008.00 av	adow_Regio	TTEL 7 - 13.1500.000 Crasts 2000.000 er	1703.7 = 1.5.00.000 Creat = 3.00.000 per	1781.7 - 1345.60 000 Cred - 5001000 str	10 50 00 100 - 300100 ser
17 - Changao 2 31/2 320 mi	173.7 - 12.3360.000 Court - 3459.000 nc	1702.7 - 1244400.000 Caut - 3490.000 ne	1113.1 = 13.00.00 a00 Caut = 3.651.000 mc	111.1 - 1.0.1448.000 Court = 3451.000 rec		1111.7 - 13.457.468.888 Caust = 34393.089.844	TTLT-1100000000
TTL.T = 1.2.55.05.00 Court = 338.000 pro	TTL T = 12-3108-800 Court = 308-800 rec	106.7 - 12.4500.000 Cent - 3308.000 rec	1782,7 + 134000,800 Creat = 3334,800 pre	TTELT + LA LÓDEARE Comit - JARI AND AND Comit - JARI AND	TTR: 1 - Licitate and Creat - 3300 X00 are	TTULT = 13-65 68 688 Cross = 3500.000 yrc	TTELT - 14 ADE ADE ADE ADE Course - 33003 (003 per
TTE-T - 12:15:00.000	TTE T - 12:50:00.000	110.7-124500.000	112.7 - 1500-00.00	T10.T - 13:15:00.000	1111.7 - 15.00.00 800	TTILT - 12045-00 000	TTULT - 1450-50000

TTI Local Time

- Orbit type varies as a function of launch time within a day
- The greater an L2 orbit's amplitude, the less insertion delta-v is required
- Insertion orbit selected to maximize launch opportunities
 - The size of the smallest achievable "zero-insertion-delta-v" orbit is a function of launch date
 - Frequent launch opportunities exist for "zero-insertion-deltav" 800,000 km orbits (several opportunities every week)
 - ~1-2 launch opportunities per year for "zero-insertion-delta-v" 700,000 km orbits

 Baseline Orbit: 700,000 km "Y" semi-major axis L2 orbit

- Orbit mostly inside Earth's Magnetosheath
 - Lower low energy particle flux (solar wind)
- No Earth shadows during length of mission at L2
 - Potential of lunar penumbra at < 14% obscuration
- L2-Earth-SC Angle varies from 7° to 30° over 10

Ē

Mission Timeline

- Launch (L) at T0
 - Instruments and Cryo completely deenergized, Spacecraft power in Launch Mode (low power)
- Transfer Trajectory Insertion (TTI) at L + 25 to 120 minutes
 - Performed by LV Second Stage
- LV Separation: TTI + 5 minutes
 - LV 2nd stage Collision and Contamination Avoidance Maneuver
 - LV separation, Observatory in Acquisition Mode; acquire Sun-positive nominal attitude
 - Need live RF Comm w/ ground (have TDRSS capability)
- Deploy Solar Arrays & High Gain Antenna
- Spacecraft full power on
 - Some portions of Payload on, Cryo off
- Commence Observatory Checkout
- ELV Dispersion Corrections at TTI + 24 hours
- Deploy Metering Structure
- Commence Instrument Aliveness Checks
- Observatory Outgas
 - At least 2 weeks
- First Mid-Course Correction: TTI + 16 days
- Instrument internal background measurement
- Jettison / Open Flight Mirror Assembly Covers, turn Cryo on

- Open Instrument Covers and Gate Valves
- Calibrate w/ Celestial Targets
- Second Mid-Course Correction: TTI + 60 days
- L2 Orbit Insertion (L2OI) / Y-Amplitude Lowering Maneuver: ~ TTI + 100 days
- Science Ops
 - Downlink data (while observing, 30 minutes a day)
 - Repoint as required
 - Momentum Unloading Burns and L2 Stationkeeping burns during slews
 - Switch Instrument Mode every 2 weeks to 1 month
- EOM Disposal: L + 10 years +++ ...
 - Delta-v < 1 m/s to driftaway trajectory, optional (not required)

IXO Observation Parameters

Target	Earth Earth Roll: +/- 10° Field Of Regard Boresight stays within this +/- 20° band at all times (20 deg yaw)		
Field of Regard	 Pitch: +/- 20° off Sunline Yaw: +/- 180° Roll: +/- 10° (with a goal of 20°) off Sunline 		
Slew	 Average slew: 60 degrees in 60 minutes (goal value; negotiable, based on Reaction Wheel selection) Average # of slews per day: 2.5 during first year of mission, less later 		
Operational Efficiency	 ~85%, when averaged over the mission life 		
Timing accuracy	• Photon arrival tagged to UTC to \pm 100 μ sec		
eesa JAXA	Science Team Meeting / Sept 17 – 19, 2008 Project Update–16		

IXO Pointing Performance

Term	Definition	Requirement	<u>Stat</u>
Image Position Control	The absolute precision of placing and keeping an image on the Focal Plane Detector	 Pitch: 10 arcsec Yaw: 10 arcsec Roll: 30 arcsec Allocate 5 ["RSS"] of the 10" total to the ACS Allocate 8.6 arcsec ["RSS"] for all other effects: thermal distortion, flex body effects (shear, banana, torsion), alignment shifts, etc 	3σ
Image Position Reconstruction Knowledge (a.k.a.: "Aspect Reconstruction)	The absolute post facto knowledge of a down-linked and processed image's position relative to the Truth:	 Radial 1 arcsec (that is pitch and yaw combined, equivalent to ~0.7" pitch and ~0.7" roll) Roll: 3 arcsec 	HPD
Metering Structure Deflections (All Static and Dynamic Flex Body Effects combined)	Flex Body Effects displace images from their nominal position. Flex Body Effects are Static (e.g. deployment position errors) and Dynamic.	< +/-10 mm in X and Y< 4 arcmin in Torsion	(3σ)
Deployable Metering Structure Deflections (Static and Dynamic Flex Body Effects combined)	As above	 < +/-7 mm < 3 arcmin in Torsion 	(3σ)
Jitter (excluded from the Image Position Knowledge requirements)	Jitter effects encompass all high frequency errors above the bandwidth of the Control System and Monitoring System	200 milliarcsec over 200 msec	HPD

IXO Mass Rackup

ITEM	CBE	Reserve	Alloc.
Optics Module (OM)	2016	30%	2621
Fixed Metering Structure (FMS)	491	30%	638
Spacecraft Bus (SCB)	673	30%	875
Deployable (Aft) Metering Structure (10.6m)	408	30%	530
Instrument Module	695	30%	903
PAF and LV Separation System	227		241
OBSERVATORY DRY LAUNCH MASS	4509		5808
Propellant Mass (10 Years)			308
OBSERVATORY WET LAUNCH MASS			6116
Atlas V 551 Med Fairing Contractual Throw Mass			6425
Project Margin			309
Project Margin %			5%

THIS IS GOOD NEWS!!!

Propellant Calculations

DELTA V BUDGET FOR 5 YEARS						
	Estimate	ACS Tax	Contingency	Subtotal		
Launch Window	10 m/sec	5%	0%	11 m/sec		
ELV Dispersion Correction	40 m/sec	5%	0%	42 m/sec		
Mid-Course Correction	10 m/sec	5%	5%	11 m/sec		
Orbit Lowering Maneuver	25 m/sec	5%	0%	26 m/sec		
L2 Stationkeeping for 5 years	20 m/sec	5%	5%	22 m/sec		
Momentum Management for 5 years	1.8 m/sec	0%	5%	2 m/sec		
De-orbit	1 m/sec	5%	5%	1 m/sec		
Total Equivalent Delta V 115 m/sec						

ALLOCATION PROPELLANT BUDGET				
	Allocation			
Allocation Dry Mass	5574.9 kg			
Prop Mass (use equivalent lsp =275)	241.9 kg			
5% Ullage and Residual	12 kg			
Allocated Propellant Mass	254.0 kg			

DELTA V BUDGET FOR 10 YEARS						
	Estimate	ACS Tax	Contingency	Subtotal		
Launch Window	10 m/sec	5%	0%	11 m/sec		
ELV Dispersion Correction	40 m/sec	5%	0%	42 m/sec		
Mid-Course Correction	10 m/sec	5%	5%	11 m/sec		
Orbit Lowering Maneuver	25 m/sec	5%	0%	26 m/sec		
L2 Stationkeeping for 10 years	40 m/sec	5%	5%	44 m/sec		
Momentum Management for 10 years	3.6 m/sec	0%	5%	4 m/sec		
De-orbit	1 m/sec	5%	5%	1 m/sec		
Total Equivalent Delta V 139 m/sec						

Propellant mass increase is about 11 kg/year

ALLOCATION PROPELLANT BUDGET				
	Allocation			
Allocation Dry Mass	5574.9 kg			
Prop Mass (use equivalent lsp =275)	293.7 kg			
5% Ullage and Residual	15 kg			
Allocated Propellant Mass	308.4 kg			

esa 🚜 🛪 A

NASA

Power Loads

2008 ConX-5 MDL Study's Power 2008 08 15 GK

(CBE + 30%)	Laun	ch	Crui	ise	Scie	ence	Do	wnlink		Slew	Safehold	Peak
Observatory	164	4	3496		35	537 3		570	3	828	2680	4344
Science Payload	0		28	74	28	374	2	874	2	2797	1897	2874
S/C	164	4	622		6	63		696	1	031	783	1470
ACS	16		6	5		70		70		433	57	569
C&DH	98		19	2	1	92		203		205	185	229
RF Comm	0		57		Ļ	57		104		57	57	117
Mech	0		0			0	0			0	0	0
Propulsion	6.5	5	6.	5	6	6.5		6.5		6.5	6.5	6.5
Power	5		185		2	217		219		210	175	305
CBE Numbers	Мос	Mode 1			Mode 2			Safeho	ld		Unit Powe	r
	Ave	Pe	ak	Av	ve Peal		k			Ave	Peak	Standby
Science Payload	2152	22	11	20	17	195	5	1459				
FMA	1394	13	94	13	94	139	4	1394		1394	1394	1394
XMS	649	70	01	32	23	215	5	65		649	701	323
WFI	47	4	7	21	1	250)	0		211	250	47
HXI	5	5	5	3	2	32		0		32	32	5
XGS	57	6	4	5	7	64		0		57	64	0

PSE BOL power delivered is the max. EOL load + 20% = 5000W (sized for 10 years L2 mission)

ISSUES

- Current configuration doesn't self-consistently address hard x-ray capability
- Only one of the two potential gratings configurations was studied
- Need to re-visit data rates with backgrounds
- Baffle layouts are generic
- Additional study of micrometeorite issue is required
- There is a significant issue with CP/CM offset (see next slide)

CM Considerations

eesa 🤊

Three "Center of Mass" (CM) considerations:

- 2. Launch Vehicle "CG height limitation"
 - Height limit of CG in Atlas 551 using a "3302" Truss Payload Adapter: 571.5 cm above Separation Plane
- 3. Propulsion thrust vector
 - Must locate all thrusters on non-deployable parts of the Observatory (welded prop system)
 - CM must be "embraced" by thrusters "above and below"
 - Thrusters must be as far apart as possible for large "slew" moment arm
- 4. Center of Mass Center of (solar) Pressure
 - Minimizing CM-CP offset:
 - by proper positioning the solar arrays on the Fixed Metering Structure...

minimizes:

- solar torque disturbance
- propellant and frequency of momentum unloading

Low Risk Mission Approach

The Spacecraft (i.e. Observatory minus Science Payload) has numerous features to guarantee mission success:

Class B Mission

- No significant performance degradation w/ single point failure
- Credible Deployable Mast performance
 - Performance analyzed with existing Nustar-like booms (20m focal length); static pointing performance meets and outperforms IXO needs

Failsafe mechanisms

- Slightly degraded mission possible w/ only 2 of 3 masts deployed
- Failsafe Moveable Instrument Platform mechanism enables actuation even upon failure of the primary mechanism
- C&DH
 - Ultra redundant "spacecraft wide web" Spacewire architecture
- Robust "no-microprocessors" Sun-positive Safe-Mode
 - Body mounted solar arrays allow the Observatory to maintain Survival Mode indefinitely even w/o deployed solar array wings

Summary and Future Work

- Baseline mission concept appears viable
 - Spacecraft (i.e. Observatory minus Science Payload) appears feasible with technologies that exist today
- Work is continuing by refining the design in every discipline with recursive iteration thru all system implications until full convergence:
 - Finite Element Modeling (launch and on-orbit configurations) to validate mass estimates
 - Control System requirements definition (full science requirements flow-down) and performance analysis
 - Alignment Monitor definition and accommodation
 - Component layout, both Spacecraft and Science Payload
- Future mission configuration work is anticipated to address
 - 20 vs. 25 m focal length trades
 - Payload modifications to achieve hard X-ray response
 - Compatibility with micropore mirror
 - Compatibility with Ariane V launch vehicle
- CDF's independent study should provide additional confidence in the overall approach

BACKUP MATERIAL

IXO Observatory - Launch Configuration

Launch Configuration

Launch Vehicle Truss Adapter and Mission-unique Separation System

IXO Observatory - Deployed Configuration

Modular Observatory Design

2. Deployable Metering Structure Parameters

All numbers apply to 3 Mast System Deployed	<u>Term</u> Combined for deployment, short term, and long term effects. Thermal distortion not included	Parameters	<u>Unit</u>	<u>Stat</u>
Dimensions	Length	12.2	m	
Deployable Metering Structure Deflections (Static and Dynamic Flex Body Effects combined)	Flex Body Effects displace images from their nominal position (i.e. alter the pointing of the Boresight, defined as the line connecting a "central" pixel to the Mirror Node)	< +/- 1.5	mm	(3σ)
Frequencies	1st mode (torsion) 2ed mode (bending)	> 1 > 2	Hz Hz	
Mass	Incl. complete 3 Mast System, Internal Harnesses, Deployment Controller, etc.	< 200	kg	
Power	During deployment Deployed	< 600 0	w w	
Push force during deployment / capable of deploying	 Instrument module "Pull-up" multi-layer Telescope Shroud sleeve (4.0 meter dia) w/ two baffles inside "Pull-up along-the-mast" harness 	< 800 < 100 < 100	kg kg kg	

2. Deployable Metering Structure - Long Term Drift and Repeatability

Mast repeatability and long term drift deflections (thermal distortion is not included)

From: Messner, Dave [Dave.Messner@ATK.COM), Sunday, August 03, 2008 10:44 PM

- Long term drift due to longeron ball seating, longeron coefficient of moisture expansion, diagonal ball seating, diagonal cable hysteresis, and diagonal cable creep:
 - 0.97 mm 3σ lateral deflection for one mast, (mm)
 - 0.018 mm 3σ elongation for one mast, (mm)
 - 0.558 mm 3σ 3 mast deflection, (mm)
 - 0.026 deg 3σ 3 mast twist, (deg) = 1.6 arcmin
 - 6.6E-04 deg 3σ 3 mast tip rotation, (deg)
- Repeatability due to longeron ball seating, longeron coefficient of moisture expansion, diagonal ball seating, diagonal cable hysteresis, and diagonal cable creep:
 - 0.85 mm 3σ lateral deflection for one mast, (mm)
 - 0.012 mm 3σ elongation for one mast, (mm)
 - 0.49 mm 3σ 3 mast lateral deflection, (mm)
 - 0.023 deg 3 σ 3 mast twist, (deg)
 - 4.5E-04 deg 3σ 3 mast tip rotation, (deg)

Note: Repeatability tests conducted on a six-bay engineering mast were within 2 sigma of calculated predictions for that mast.

Launch Configuration and Mass Summary

Atlas V 551 Medium Composite Fairing

De la sil	Estimate		Allocation
Payload	(kg)	Cont.	(kg)
Flight Mirror Assembly	1775	30%	2308
XMS	258	30%	336
WFI	80	30%	104
XGS	62	30%	81
HXI	24	30%	31
Misc. Payload Accom	51	30%	66
Payload Total	2250	30%	2924
Bus	Estimate (kg)	Cont.	Allocation (kg)
Avionics	66	30%	86
Communications	36	30%	47
Attitude Control	72	30%	94
Structure and Mechanisms	1188	30%	1545
Power	108	30%	141
Propulsion (dry)	48	30%	63
Thermal	239	30%	311
Harness	274	30%	357
Bus Total	2033	30%	2643
Observatory	Estimate (kg)	Cont.	Allocation (kg)
Observatory On Orbit Dry Mass	4282	30%	5567
Separation System LV Side	227	6%	241
Propellant Mass (10 yrs)			308
Observatory Wet Launch Mass			6116
Margins			
Atlas V 551 Throw Mass (C3=-0.5)			6425
Project Manager's Margin			309

Data Summary

	Element	Data Rate (kbps) (Includes 30% contingency)				
		Average	Peak	Comments		
FMA	Science	0.0	0.0			
	Housekeeping	1.3	1.3			
	Total FMA	1.3	1.3			
XMS	Science	52.0	2,184.0			
	Housekeeping	1.3	1.3			
	Total XMS	53.3	2,185.3			
WFI	Science	58.5	585.0	4.5 Mbps for high background;		
	Housekeeping	1.3	1.3			
	Total WFI	59.8	586.3			
HXI	Science	17.0	150.0	based on BEPAC HXT		
	Housekeeping	1.3	1.3			
	Total HXI	18.3	151.3			
XGS	Science	150.0	1,500.0			
	Housekeeping	1.3	1.3			
	Total XGS	151.3	1,501.3			
Total by	Mode 1	204.6	3,686.6			
Mode	Mode 2	229.4	2,238.9			

STORAGE MODE 1	<u>Rate</u>	<u>Unit</u>
Low Science Data Rate per sec	204.6	kbps
Low Science Data Rate - Data Volume per hour	0.7	Gbit
Low Science Data Rate - Data Volume per day	17.7	Gbit
Low Science Data Rate - Data Volume per 60 hours	44.2	Gbit
High Science Data Rate per sec	3,686.6	kbps
High Science Data Rate - Data Volume per hour	13.3	Gbit
High Science Data Rate - Data Volume per 12 hours	159.3	Gbit
Mode 1 Storage Total	<u>203.5</u>	<u>Gbit</u>

STORAGE MODE 2	Rate	<u>Unit</u>
Low Science Data Rate per sec	229.4	kbps
Low Science Data Rate - Data Volume per hour	825.8	Gbit
Low Science Data Rate - Data Volume per day	19.8	Gbit
Low Science Data Rate - Data Volume per 60 hours	49.6	Gbit
High Science Data Rate per sec	2,238.9	kbps
High Science Data Rate - Data Volume per hour		Gbit
High Science Data rate 12 hours		Gbit
Mode 2 Total	146.3	Gbit

Science Modes

Switch between Mode 1 and 2 on average 2 times per month (based on use of XMS and WFI). Targets available for < 12 weeks per year based on \pm 20 deg pitch field of regard.		Science Modes	
		Mode 1	Mode 2
Instrument Operations	Science	XMS, XGS	WFI, HXI, XGS
	Standby	WFI, HXI	XMS
Observation Duration	Average	10 hours	
	Minimum	30 minutes	
	Peak	48 hours	
Percent of time for each Mode		50%	50%

Systems Engineering

Systems engineering practices based on the following guidelines

- NASA Systems Engineering Handbook, SP-610S
- GSFC Systems Engineering GPR 7120.5A
- GSFC "GOLD Rules" (GSFC STD 1000, Rules for the Design, Development, Verification, and Operation of Flight Systems)

Class B Missions

- Single Point Failures (SPFs)
 - Critical SPFs (for Level 1 requirements) may be permitted but are minimized and mitigated by use of high reliability parts and additional testing. Essential spacecraft functions and key instruments are typically fully redundant. Other hardware has partial redundancy and/or provisions for graceful degradation.
- Engineering Model, Prototype, Flight, and Spare Hardware
 - Engineering model hardware for new or significantly modified designs. Protoflight hardware (in lieu of separate prototype and flight models) except where extensive qualification testing is anticipated. Spare (or refurbishable prototype) hardware as needed to avoidmajor program impact.
- Qualification, Acceptance, and Protoflight Test Program
 - Formal qualification and acceptance test programs and integrated end-to-end testing at all hardware levels. May use a combination of qualification and protoflight hardware. Qualified software simulators used to verify software and system.

