### THE XEUS FOCAL PLANE INSTRUMENTS

Cryogenic Imaging X-ray Spectrometer (NFI), Cooling, and X-ray polarimeter

Piet de Korte On behalf of the XEUS Instrument Working Group



Netherlands Organisation for Scientific Research

### XEUS Payload Working Group (Core Team)

- Didier Barret, CESR-CNRS/UPS, F
- Ronaldo Bellazzini, INFN, Pisa, I
- Lionel Duband, CEA/CENG, F
- Piet de Korte, SRON, NL (chair)
- Didier Martin, ESA/ESTEC, NL
- Arvind Parmar, ESA/ESTEC, NL
- Luigi Piro, IASF, Roma, I Spectrometers
- Lothar Strüder, HLL/MPE, G (co-chair)
- Tadayuki Takahashi, JAXA, J
- Dick Willingale, Leicester, UK

- High Time Resolution
- X-ray Polarimeter
- Cooling
- Cryogenic Spectrometers
- ESA instrument scientist
- ESA Mission Scientist
  - Cryogenic
- DEPFET Si Drift Detectors Hard X-ray Imager X-ray optics



# **XEUS FOCAL PLANE INSTRUMENTS**

| Instrument |                                                                                                  | Mass<br>(kg) | Power<br>(W) |
|------------|--------------------------------------------------------------------------------------------------|--------------|--------------|
| WFI        | Wide Field Imager<br>Si-based DEPFET array<br>(excl. baffle)                                     | 90           | 254          |
| NFI        | Narrow Field Imager<br>TES-based micro-calorimeter array<br>(incl. cryostat + last cooler stage) | 151          | 288          |
| HXI        | Hard X-ray Imager<br>CdTe-based imaging array<br>(excl. baffle)                                  | 31           | 61           |
| HTRS       | High Time Resolution Spectrometer<br>Si-drift detectors                                          | 31           | 108          |
| XPOL       | X-ray POLarimeter (XPOL)<br>Gas proportional imager                                              | 15           | 44           |



#### **REQUIREMENTS from XEUS Science Requirements Document\_v5.**

- X-ray Optics
  - 5 m<sup>2</sup> at 1 keV and 2 m<sup>2</sup> at 7 keV
  - 5 arcsec spatial resolution
- Field of View (arcmin)
  - 7'Ø(WFI); 1.7'Ø(NFI); 5' × 5'(HXI)
- Energy Range (keV)
  - 0.2 7 (NFI); 0.1 15 (WFI); 1 15 (HTRS); 1 40 (HXI)
- Energy Resolution
  - 150 eV @ 6 keV (WFI); 2 eV for E < 2 keV, and 6 eV @ 6 keV (NFI); 1 keV @ 40 keV (HXI)</li>
- Count rate
  - 8 10<sup>3</sup> c/s 1% pile-up (WFI); ?8 10<sup>3</sup>? c/s 10% pile-up (NFI); 2 10<sup>6</sup> c/s 10% pile-up (HTRS)
- Polarimetry
  - 2% for 10 mCrab in 10 ks (XPOL); 2% for 2 mCrab in 100 ks



### **Mirror Driven Specifications**

Long Focal Length gives Large Collection Area, but also Large detectors.

• Angular Resolution

**5** arc sec resolution (Requirement) = 848 μm

• Field of View

7 arc min radius = 71 mm

• Large area

1mCrab ~ 300 c/sec



# Narrow Field Imager - TES-based Micro-Calorimeter PIXEL DESIGN





# Narrow Field Imager - TES-based Micro-Calorimeter ARRAYS



RON

5 x 5 array with Cu/Bi absorbers



#### Close-up of 32 x 32 array

# Narrow Field Imager - TES-based Micro-Calorimeter PERFORMANCE for PIXELS from 5 x 5 arrays

•  $\Delta E_{TDL} \approx 3.1 \text{ eV}$ 



# Narrow Field Imager - TES-based Micro-Calorimeter PERFORMANCE for PIXELS from 5 x 5 arrays



#### MICRO-CALORIMETER READ-OUT BY SQUID AMPLIFIER



PTB 16-SQUID-arrays

- Amplifier of magnetic flux. Works at <</li>
  4 K, P ~ 10 nW
- Current transferred to flux by SQUID input coil
- SQUID "Linear" dynamic range typically 5  $10^5 \ \sqrt{\text{Hz}}$
- Feedback with gain ~ 10 required for linearization and dynamic range improvement (flux-locked-loop/FLL)
- Standard FLL not enough gainbandwidth  $\rightarrow$  baseband feedback





### FREQUENCY DOMAIN MULTIPLEXING CURRENT SUMMING TOPOLOGY



SRON

pixels/channel

### **LC-filters**

- Require high Q-factor, since  $R_{LOSS} = \omega L/Q < < R_{BIAS}$ 
  - Q > 800.f (MHz)
  - Superconducting coils and Capacitors
- $Al_2O_3$  dielectric with  $\varepsilon \approx 9$  has low loss
  - Capacity: 4.35 nF/mm<sup>2</sup>
- Step coverage problems with coil current leads
  - Solved with sloped edges (Process optimization)

Q > 4000 measured and demonstrated



### **BASEBAND FEEDBACK**



• Instability of feedback set by frequency separation of carriers (200 kHz) delay (250 ns) due to digitization and processing. Gain-bandwidth at base-band of about 30 kHz, so 3x feedback gain at highest signal frequency (10kHz)

• Performance tested on electrical breadboard.

• Bandwidth for carriers up to about 10 MHz (limited by SQUID back-action noise and LC-filter Q-factor)

• At least possible to multiplex 32 - 45 pixels XEUS type pixels



#### BaseBand Feedback Electronics board

RON



#### **BBFB** electronics board realization





#### Amplitude and Phase measurements/model of BBFB On a commercial Xilinx breadboard



Amplitude: red-data blue-model Phase: red-data blue-model

Gain-bandwidth of 35 kHz for 200 kHz spacing and 830 ns delay FLL-gain of 3.5x at highest signal frequency (10 kHz)



#### Amplitude and Phase measurements/model of BBFB On a commercial Xilinx breadboard



Measured carrier suppression – 50 dB for a gain-bandwidth of 18 kHz



### Narrow Field Imager - TES-based Micro-Calorimeter





Detection Efficiency (7 µm Bi)



### Narrow Field Imager - TES-based Micro-Calorimeter



 $\Delta E = 2 eV < 2 keV$ 

1792 pixels for 1.7 arcmin diameter FoV

Energy 0.2 – 10 keV

Mass 151 kg (incl. last stage cooler)

Power 217 W

Requires 1 m long baffle



#### **TES micro-calorimeters in EUROPE SRON and EURECA COLLABORATION**

P. de Korte[1], J. Anquita<sup>a</sup>, F. Bakker, X. Barcons<sup>b</sup>, P. Bastia<sup>i</sup>, J. Beyer<sup>m</sup>, D. Boersma, F. Briones<sup>a</sup>, M. Bruijn, J. Bussons<sup>b,c</sup>, A. Camòn<sup>d</sup>, F. Carrera<sup>b</sup>, M. Ceballos<sup>b</sup>, L. Colasanti<sup>j</sup>, D. Drung<sup>m</sup>, L. Fabrega<sup>f</sup>, L. Ferrari<sup>h</sup>, F. Gatti<sup>h</sup>, R. Gonzalez-Arrabal<sup>a</sup>, L. Gottardi, W. Hajdas<sup>g</sup>, P. Helistö<sup>l</sup>, J.W. den Herder, H. Hoevers, Y. Ishisaki<sup>n</sup>, M. Kiviranta<sup>l</sup>, J. van der Kuur, C. Macculi<sup>j</sup>, A. Mchedlishvili<sup>g</sup>, K. Mitsuda<sup>o</sup>, B. Monna<sup>p</sup>, R. Mossel, T. Ohashi<sup>n</sup>, S. Pantali<sup>q</sup>, M. Parra<sup>d</sup>, L. Piro<sup>j</sup>, R. Rohlfs<sup>q</sup>, J. Sésé<sup>e</sup>, Y. Takei, G. Torrioli<sup>k</sup>, H. van Weers, N. Yamasaki<sup>o</sup>

SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, Netherlands, <sup>a</sup>IMM-CSIC, Madrid, Spain, <sup>b</sup>IFCA, Santander, Spain, <sup>c</sup>University of Murcia, Murcia, Spain, <sup>d</sup>IMCA, Zaragoza, Spain, <sup>e</sup>INA, Zaragoza, Spain, <sup>f</sup>IMM-CSIC, Barcelona, Spain, <sup>g</sup>PSI, Villigen, Switserland, <sup>h</sup>INFN/University of Genua, Genua, Italy,<sup>i</sup>Thales Alenia Spazio, Milano, Italy, <sup>j</sup>IASF/INAF, Rome, Italy, <sup>k</sup>IFN-CNR Rome, Rome, Italy, <sup>I</sup>VTT-Sensors, Espoo, Finland, <sup>m</sup>PTB, Berlin, Germany, <sup>n</sup>Tokyo Metropolitan University, Tokyo, Japan, <sup>o</sup>ISAS/JAXA, Tokyo, Japan,<sup>p</sup>Systematic Design B.V., Delft, Netherlands, <sup>q</sup>ISDC, Versoix, Switserland



### Si-doped X-ray Micro-calorimeter at CEA-Saclay

Herschel heritage: Developments by CEA-Saclay and LETI, Grenoble Contributed paper by Claude Pigot

Fully integrated sensor with read-out multiplexer





Results: - Impedance of 8X8 sensor matrix in the right range with good sensitivity<br/>- Integration of absorber matrix onto sensor matrix promisingNext steps:April 2008: First 8X8 array with freed Sensor & Absorber<br/>End 2008: 1st Iteration Cold Electronics

Pro: Fully integrated system with multiplexed read-out Con: Till now no X-ray performance data, use of Ta-absorbers by other teams failed, potentially slow response, developments late for XEUS. SRON Narrow Field Imager - TES-based Micro-Calorimeter Interface with satellite cryostat at 2.5 K with 10 mW cooling power

Options under development:



### X-ray Polarimeter





#### **XPOL - Performance**





5.2 keV polarized photons for two angular rotations of the polarizer showing the good angular sensitivity. SRON



The modulation factor measured at 2.6 keV, 3.7 keV and 5.2 keV compared with the Monte Carlo previsions.

5

3

0ÉL

6

8