Production and Distribution of the Elements

John P. Hughes Rutgers University

Panel Charge and Membership

Supernovae and their Remnants Heavy metal/dust production Shock Physics

Chair: Jack Hughes (Rutgers University)Carlos Badenes (Princeton)Sangwook Park (PSU)David Burrows (PSU)Dan Patnaude (SAO)Tracey Delaney (MIT)Dave Pooley (Wisconsin)Fiona Harrison (Caltech)Stephen Reynolds (NCSU)Martin Laming (NRL)Pat Slane (SAO)Julia Lee (Harvard)Alicia Soderberg (Princeton)

Key Topic I Nucleosynthesis and Explosion Mechanisms in Supernovae through Studies of Supernova Remnants

Core Collapse SNe

- ~ 3/4 of all SNe
- M(progenitor) > 8 solar masses
- Predominant producers of O, Ne, Mg
- Leave compact remnants
- Gaseous remnants highly structured and asymmetric
- Precise explosion mechanism unknown

Thermonuclear SNe

- ~ 1/4 of all SNe
- White dwarfs that grow to near the Chandrasehkar mass
- Predominant producers of Fe
- Gaseous remnants relatively symmetric
- Progenitor systems and precise explosion mechanism unknown

Key Topic I Nucleosynthesis and Explosion Mechanisms in Supernovae through Studies of Supernova Remnants

Why X-rays?

- Uniquely illuminate the composition and dynamics of the shocked ejecta and ambient medium – no other wave band offers as comprehensive a view
- SNRs offer a 3-D view of the entire ejecta – impossible to obtain on any individual SN, for which we sample a single line-of-sight

Why IXO?

- Current CCD "spectroscopy" is more akin to BVRI imaging than true optical spectroscopy
- Temperature and ionization diagnostics based on line ratios
- Radial velocities and line broadening
- Access to SNRs in M31 and M33

White Paper Example Nucleosynthesis of trace Fe-group elements in Remnants of Type Ia Supernovae

Motivation

- Explosion process (ignition, burning, etc.) in SN Ia longstanding unsolved problem
- SN optical light comes from radioactive decay of Fe-group elements – relevant to light curve width relation
- Roughly ½ of all the Fe in the Universe comes from this process

Fe-peak Elements

In SNe Ia nucleosynthesis is the explosion: C-O burns at high P and T to nuclear statistical equilibrium (NSE)

hydrogen 1																		heilum 2
H		56811																не
Ithium	beryflium							50 N					boron	carbon	nitrogen	oxygen	fluorine	4.0026
1	D _a												Ď	ĉ	Ń	å	9	No
LI	ве												В	U.	N	U	F	Ne
sodium	magnesium		Ν	121	_			Not					aluminium	sticon	phosphorus	sultur	chlorine	argon
Na	Ma		I '		_	Doto	octor	Detected					Å.	¢;	D	ŝ	č	٨r
22.990	24.305	Delected								elec	teu		26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	20		scandium 21	stanium 22	23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	tromine 35	krypton 36
ĸ	Ca		Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63,546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	38		yttrium 39	zirconium 40	niobium 41	42	43	ruthonium 44	rhodium 45	46	silver 47	cadmium 48	indium 49	50 tin	antimony 51	tellurium 52	iodine 53	xenon 54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aa	Cd	In	Sn	Sb	Te	1	Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	ridium 77	platinum 78	gold 79	mercury 80	thallium 81	82	bismuth 83	polonium 84	astatine 85	radon 86
Cs	Ba	×	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Ha	TI	Pb	Bi	Po	At	Rn
132.91	137.33	1010	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	107	108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112		ununguadium 114				
Fr	Ra	* *	Lr	Rf	Db	Sa	Bh	Hs	Mt	Uun	Uuu	Uub		Uua				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
*Lanthanide series			lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70		
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb		
			138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
* * Actinide series			actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkellum 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102		
			Ac	Th	Pa	Ü	Nn	Pu	Am	Cm	Bk	Cf	Fs	Fm	Md	No		
			[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

August 20-22, 2008

NSE

Nucleosynthesis in nuclear statistical equilibrium (NSE) depends on temperature, density, and Y_e (neutron excess)

From Frank Timmes

Increasing neutron excess

August 20-22, 2008

Suzaku integrated spectrum of Tycho

Suzaku detection of Cr (>10 σ) and Mn (>7 σ) K α emission lines from Tycho SNR ejecta

Tycho believed to be SN Type Ia, to be confirmed shortly with light echo spectroscopy

August 20-22, 2008

Mn/Cr as a Metallicity Tracer

Metallicity is an important constraint on the age of a progenitor system.

Processes during the Progenitor's Evolution:

- During the progenitor's MS hydrogen burning through the CNO cycle an excess abundance of ¹⁴N develops
- This gets converted to ²²Ne during hydrostatic He-burning, which increases the neutron excess of the WD material
- Timmes et al. (2003) have shown that there is a linear relationship between the neutron excess and the original metallicity of the progenitor
- The neutron excess determines the relative proportion of Fe-group elements produced at NSE.

Mn/Cr as a Metallicity Tracer

Processes during the SN explosion

- Model SNIa explosions using different neutron excesses and various classes of explosions (delayed detonations, etc.)
- Complexities due to gravitational settling of elements and pre-explosion simmering of WD
- For the progenitor of Tycho's SN, this yields a supersolar metallicity
 - -Z = 0.048 (-0.036, + 0.051)
 - Large uncertainty, but definitely not subsolar

Badenes, Bravo, & JPH 2008, ApJL, 680, L33

Mn/Cr also detected in W49B, while Cr is seen in Kepler and Cas A. IXO should allow detection in ~20 Galactic or Magellanic Cloud SNRs

August 20-22, 2008

Simulations

Well sampled spectra extracted from 15" diameter circle. Remnant size and characteristic knot size also well matched to 15" HPD 5" will be even better.

Sim (15" PSF)

Simulations

Simulated Con-X spectrum derived from Chandra fits. Detection (3σ) of Cr K α takes 70 ks, Mn K α takes 220 ks Can map on 15" arcsec scales

L lines easier to detect (Ni residuals)

Key Topic II The Physics of Shocks

Basic Questions

- How do strong shocks in astrophysics accelerate cosmic rays, heat electrons, and amplify magnetic field?
- How do the thermal and nonthermal properties of strong shocks interact?

Observationally robust (seen at several locations)

Chandra ACIS spectra

CR-Accelerating Shocks

Patnaude, Ellison, & Slane 2008

- Calculation of ionization states of Oxygen for blast waves with (solid) and without (dashed) efficient particle acceleration
 - Models match distance, age, etc. of Tycho
- Synchrotron emission typically dominates – need IXO spectral resolution to dig out these lines.
- Will be a challenging measurement even at 5" resolution (impossible at 15")

Usefulness of IXO improved performance Angular Resolution – most useful overall Field of View – for calorimeter very useful; for CCD not so much Collecting Area – useful for M33/M31 SNR studies Hard X-ray data – very useful if PSF matched to that of soft X-ray telescope