

## Progress and Status of the X-Ray Microcalorimeter Spectrometer (XMS)

Presented by R.L. Kelley

NASA/GSFC

August 20-22, 2008

Facility Science Team - GSFC





- Update on detector R&D
- Results of IDL and MDL
- Pulse processing and counting rate issues



## **Reference TES Approach**





# **XO** Superconducting Transition – R and I



M. Lindeman et al. 2008



### Multiplexed TES calorimeter array



Also developed de-MUX software and we are now working on implementing real-time pulse height analysis



## NIST X-ray array-testing facility



# XO 2 x 8 pixels read out with SQUID MUX





## 2x8 multiplexer demonstration



### Error in fit?

- Spectral database of Hölzer, et al. (1997), modified by private communication, based on *fluoresced* Mn
  - Our source is radioactive <sup>55</sup>Fe (K capture)
- Further investigation planned: *microcalorimeter array is the ideal tool for this measurement*



#### Multi Absorber TES - 1 TES, 4 absorbers

Simple approach: Separate absorbers (e.g., 4) connected to a single TES, each with a different thermal conductance.





# XO New reference array layout (for Con-X)

Central, core array:

- Individual TES one absorber/TES (40 x 40)
- 2 arcmin FOV
- 2.5 eV resolution (FWHM)
- Fast (< 300 µsec time constant)</li>

#### Outer, extended array

- 4 absorbers/TES
- Extends array to 52 x 52 pixels for a total of 2176 readout channels
- 5.0 arcmin FOV
- < 10 eV resolution</p>
- ~ 2 msec time constant
  August 20-22, 2008





**Near-term Plans** 

Design of the photolithographic mask set for fabricating 32 x 32 arrays is underway.

Pixel pitch of 300 microns, corresponding to the size requirement for the 20 m f/l version of Con-X.

Use strip-line technology to achieve necessary electrical trace density

Plan to have first arrays for testing by December 2008.



## **Incorporating Micro Strip-lines**

microstrip

wiring

Work towards incorporation of microstrip electrical contacts into GSFC TES arrays progressing:

> Superconducting traces separated by SiO<sub>2</sub> insulator

leads are needed for the high-density wiring for arrays at the 32 x 32 scale

several iterations of test devices have been fabricated and process is being refined

test devices have metallic contacts between patterned metal layers that are elsewhere isolated by an insulating layer. Different sizes to determine the smallest robust scale

each wafer also contains Nyquist chips consisting of the TES bias resistor and Nyquist inductor; these are essential elements of the TES bias circuit





Longer-term issues

Reducing thermal and electrical cross talk as the pixel count grows.

Heat sinking the array (center to perimeter) to ensure high uniformity.

Increasing MUX speed to enable 32 rows.

Optimize TES thermometer geometry for maximum pulse sensitivity.

Energy resolution of new PoST devices with ~ 6 times the area of those demonstrated.

Detector assembly – how to package > 2000 channels!

August 20-22, 2008

Facility Science Team - GSFC

#### Cryostat design adopted for recent IDL study



Estimated Mass: 257 kg

| Power:    |       |  |  |  |
|-----------|-------|--|--|--|
| Operating |       |  |  |  |
| Average   | 649 W |  |  |  |
| Peak      | 709W  |  |  |  |
| Standby   | 215 W |  |  |  |

Data Rate Requirement:

Average Peak 41 kbps 1680 kbps

# *KO* Cryostat design adopted for recent IDL study





### XMS configuration on spacecraft

#### Radiator for XMS compressor





## Instrument Module Side View



#### **Dealing with Pulse Pile-up: Event Grades**





PSF Relative to Pixel Size Helps with Bright Point Sources

Gaussian PSF with HPD of 5 arcsec

20 m f/l => 10.3 arcsec/mm

0.3 mm pixels => 3 arcsec pixels

| Ring | Fraction | Fraction<br><i>per</i><br>pixel |
|------|----------|---------------------------------|
| а    | 32.38%   | 32.38%                          |
| b    | 46.60%   | 5.82%                           |
| С    | 17.34    | 1.08%                           |
| d    | 3.33%    | 0.14%                           |







#### **Total Throughput**



August 20-22, 2008

Facility Science Team - GSFC



#### **Energy Resolution of various Grades**

Still a lot of work being done on the best way to analyze fast, criticallydamped pulse data. How many time constants are optimal???

Simulations will be done on this in the coming months. For now we expect something like the following:

- Hi-res events will have the highest spectral resolution (e.g, 2.5 eV)
- Mid-res may be ~ twice the hi-res

Mid-res secondaries would be worse, but it should be possible to correct the pulse heights of secondary pulses. This requires a lot of calibration data (large range of  $\Delta t$ 's and E's!)

Low-res events will likely have > 10 eV resolution



#### High-speed calorimeter array

- 20 x 20 array of 1 arcsec pixels
- Distribute counts over ~ 10 times more pixels
- Use direct coupling to Si substrate for higher
- speed (~ 10's of micro-sec.)



Thanks to:

#### Goddard:

Joe Adams, Simon Bandler, Regis Brekosky, Ari-David Brown, Jay Chervenak, Megan Eckart, Caroline Kilbourne, Scott Porter, Jack Sadleir, Steve Smith.

#### NIST:

Randy Doriese, Gene Hilton, Kent Irwin, Carl Reintsema, Joel Ullom, Leila Vale, *and others*!



# XMS data rate requirements

#### <u>Average</u>

- 40 kbps Average Science Data Rate (no contingency)
  - Equivalent to 5 m Crab source
  - 125 cps/mCrab (based on May 2008 (TBR) NASA IXO mirror concept, Randall Smith calculation)
  - 64 bits per count (photon)
- 1 kbps Engineering data rate
- Total Average Data rate:
  - 41 kbps without contingency
  - 53 kbps with contingency (30%)

#### Maximum

From original Con-X (four detector systems), the system requirement was 4 x 10,000 cps =40,000 cps

Assuming 42 bits/event using compression from smaller Δt's, this corresponds to 1680 kbps.



## XMS Peak Data Rate

From original Con-X (four detector systems), the system requirement was 4 x 10,000 cps =40,000 cps

Assuming 42 bits/event using compression from smaller  $\Delta t$ 's, this corresponds to 1680 kbps.