Supernova & Stellar Feedback Panel: Whitepaper edition.

Dave Strickland (JHU), James Bullock (UC Irvine), Tim Heckman (JHU), Crystal Martin (UCSB), Andy Ptak (JHU), Eric Schlegel (UT San Antonio), Daniel Wang (UMass)

Changes since the Feb 21/22 FST meeting

1) Focus exclusively on feedback and kinematics in starburst galaxies (dropped normal SFing galaxies).

- 2) Key science question: *What mass of metals can a starburstdriven wind eject into the IGM as a function of the mass of the host galaxy?*
- 3) Theoretical work on expected superwind velocities in X-ray-emitting phases vs. warm neutral/ionized gas (optical/UV studies).
- 4) Refinement of XMS spectral simulations and influence of the accuracy of the XMS energy scale.
- 5) Some consideration of measuring v_{HOT} in hard band, or with gratings.
- 6) Starburst galaxy sample: measure v_{HOT} over a broad range in M_{galaxy} .

What mass of metals can a starburst-driven wind eject into the IGM as a function of the mass of the host galaxy?

- Which galaxies are responsible for the enrichment of the IGM?
- Is the galaxy M-Z relationship (e.g Tremonti et al 2004) really due to metal-loss via winds?
- Most of the energy and metals in superwinds are in the hot phases (NOT probed by optical/UV spectroscopy).
- Need to measure velocity of hot metalenriched SN ejecta in superwinds in order to assess whether material will escape.

XMS spectra

Escape velocities for local superwind galaxies and Lyman Break Galaxies with $M_* > 10^{10} M_{sun}$ are in the range 300 - 700 km/s.

The XMS calorimeter can measure:

1.) Individual X-ray line energies (redshifts) to an accuracy of +/-0.2 eV (see σ_v in Figure on RHS)

2.) line widths to +/- 200 km/s (individual soft X-ray lines) or +/-100 km/s (combining all soft X-ray lines) in < 100 ksec exposures for even the faintest regions of currently detected superwinds.

 $\sigma_v (km/s) = 86$ 75 67 60 45 30 0 O VIII Lya 8 normalized counts s⁻¹ keV⁻¹ 6 0.9 0.92E (keV) Fe XVII Ne X and Lva O VIII Lyβ Ne IX Hea O VII Hea 2 Mg XI SI XIII Hea Hea 0.5 Energy (keV)

Constellation-X XMS spectrum with 17000 detected counts (0.3-2 keV). For any line with > 40 counts the line redshift can be determined to the accuracy shown above (this is dominated by the systematic uncertainty in the energy scale).

Aug 20-22 IXO FST meeting

XMS velocity sensitivity: good enough

Caveats: (1) No background assumed. Aug 20-22 IXO FST meeting

Targets and Observational Strategy

- Starburst sample spanning broad range of galaxy mass.
- Typical angular scales of superwind X-ray nebulae: 0.5 – 10 arcmin.
- Measure velocities in multiple regions per galaxy -> PV diagrams.

Aug 20-22 IXO FST meeting

Starburst Sample

- Predicted total galaxy+wind 0.3-2 keV XMS count rates for diffuse thermal emission (excluding point sources).
- Based on Chandra/XMM.
- 35 targets with D< 200 Mpc.
- Representative, not complete.
- To get 50000 cts/galaxy (i.e
 ~ 5 high quality spectra) only need 1.3 Ms to observe these 35 starbursts.

Summary of recent panel activity

1) Focus exclusively on feedback and kinematics in starburst galaxies (dropped normal SFing galaxies).

- 2) Key science question: *What mass of metals can a starburstdriven wind eject into the IGM as a function of the mass of the host galaxy?*
- 3) Theoretical work on expected superwind velocities in X-ray-emitting phases vs. warm neutral/ionized gas (optical/UV studies).
- 4) Refinement of XMS spectral simulations and influence of the accuracy of the XMS energy scale.
- 5) Some consideration of measuring v_{HOT} in hard band, or with gratings.
- 6) Starburst galaxy sample: measure v_{HOT} over a broad range in M_{galaxy} .

Can only measure v_{WIND} using X-rays

Line offsets and line splitting/breadth

Optical emission lines from roughly edge-on starbursts with winds:

(1) Linessplit/broadenedby divergence offlow.

(2) Lines offsetfrom galaxysystemic velocity.

Optical/UV absorption lines from roughly face-on starbursts with winds:

(1) Broad lines

(2) Line centroidoffsets to bluefrom galaxysystemic velocity.

Again, typical optical/UV line offsets and widths several hundred km/s.

Line offsets and broadening cntd.

Aug 20-22 IXO FST meeting