International X-ray Observatory [XO]

IXO Facility Science Team Meeting August 20 - 22, 2008 / NASA/GSFC

Project Update

Jean Grady/NASA-GSFC NASA Project Manager

Highlights Since Last FST Meeting (Feb. 2008)

- Mission Configuration Studies with single telescope for IXO
 - Conducted trade of mirror size, mass, and focal length
 - Investigated mission options for deployable metering structure
 - Defined strawman parameters and payload for July Mission Design Lab study
 - XMS study in Instrument Design Lab (week of May 19)
 - Initiated Flight Mirror Assembly concept study
 - Developed error budget and plans for 5 arcsec angular resolution
 - Conducted MDL study (week of July 28) for observatory concept definition
- Technology Development
 - Mirror
 - Mirror segment fabrication and metrology consistent with 15 arcsec requirement; improving toward 5 arcsec
 - Good progress on alignment of segments into housing
 - Microcalorimeter
 - Demonstrated spectral resolution for inner array pixels in 8 x 8 arrays; multiplexing of 32 pixels
 - Initiated development of read-out for larger (32 x 32) arrays

IXO Mission Study

- Mission Design Lab (MDL) study was conducted at GSFC during week of July 28, 2008
- Effort to define concept includes extensive "pre-work", including definition of strawman payload and accommodation parameters, observatory requirements, parameters, and overall lay-out.
- This particular study was limited to:
 - 20 m focal length
 - 3.3 m diameter flight mirror assembly (slumped glass mirror technology)
 - Instrument complement consisting of X-ray Microcalorimeter Spectrometer,
 Wide Field Imager (WFI), Hard X-ray Imager (HXI), X-ray Grating Spectrometer
 - Atlas V 551 launch vehicle
- Overall, from studies performed to date, mission concept appears viable with positive margins
 - Provides "proof-of-concept" for extensible bench mission configuration
- Work on this configuration is continuing

Strawman Payload Summary

Single Flight Mirror Assembly (FMA)

- Grazing incidence, highly nested mirrors
- 20 m focal length

Four instruments

- X-ray Microcalorimeter Spectrometer (XMS)
 - Covers 0.6 to 10 keV with high spectral resolution
- Wide Field Imager (WFI)
 - Covers 0.1 to 15 keV with large FOV
- Hard X-ray Image (HXI)^{*}extends the WFI bandpass to 40 keV
 - Assumed detector head within WFI envelope
- X-ray Grating Spectrometer (XGS)
 - Dispersive from 0.3 to 1 keV
 - Two grating arrays mount to aft of FMA
 - CCD camera for readout on fixed instrument platform

Note:

* Response by the FMA for this particular design (without multilayers) does not meet desired level for high energies.

Mission Effective Area

- Flight Mirror Assembly
 - 3.3 m overall outer diameter (3.2 m largest diameter on optical surface)
 - 20 m focal length

Single Mirror IXO Configuration

Instrument Module

Launch Configuration and Mass Summary

Atlas V 551 Medium Composite Fairing

Payload	Estimate	Cont.	Allocation
Flight Mirror Assembly	1775	30%	2308
XMS	258	30%	336
WFI	80	30%	104
XGS	62	30%	81
HXI	24	30%	31
Misc. Payload Accom	51	30%	66
Payload Total	2250	30%	2924
Bus	Estimate (kg)	Cont.	Allocation (kg)
Avionics	66	30%	86
Communications	36	30%	47
Attitude Control	72	30%	94
Structure and Mechanisms	1188	30%	1545
Power	108	30%	141
Propulsion (dry)	48	30%	63
Thermal	239	30%	311
Harness	274	30%	357
Bus Total	2033	30%	2643
Observatory	Estimate (kg)	Cont.	Allocation (kg)
Observatory On Orbit Dry Mass	4282	30%	5567
Separation System LV Side	227	6%	241
Propellant Mass (10 yrs)			308
Observatory Wet Launch Mass			6116
Margins			
Atlas V 551 Throw Mass (C3=-0.5)			6425
Project Manager's Margin			309

Preparations for Decadal Review

- Input required for Decadal likely to be similar to what was required for recent National Research Council (NRC) Beyond Einstein Program Assessment Committee (BEPAC) review, which required the following information:
 - Science
 - Mission science objectives and flowdown to measurement requirements and performance requirements
 - Science reach compared other existing/planned missions
 - Instrumentation
 - Approach and rationale for selection
 - Performance requirements
 - Technical maturity and schedule/plans to achieve Technology Readiness Level (TRL) 6
 - Flight operations modes, complexity and software
 - Data and data analysis plans

Preparations for Decadal Review (cont.)

- Observatory
 - Spacecraft characteristics, requirements, drawings/diagrams
 - Launch options
 - Key trades performed and planned
 - Spacecraft technologies TRL status, open issues
 - S/C subsystem characteristics and requirements
 - Flight heritage of S/C systems
 - Accommodations of instrumentation
- Mission operations and ground system
- Risks and mitigation plans (top 3 for each instrumentation, spacecraft bus, overall mission)
- Mission descope options and associated performance and cost impacts
- Schedules for instrumentation, spacecraft, overall mission
- Organizational structure and responsibilities
- Cost Estimate and profile
 - 70% confidence
 - Basis of estimate and validation
- NRC will independently determine 70% confidence cost estimate

Project Lifecycle

Nominal Plan to prepare for Decadal

- Target for initial submittals to Decadal as early as February 2009
- Finalize Science measurement requirements and performance requirements
 - Facility Science Team meeting (Aug 2008), IXO Workshop and Coordination Group Meeting (Sept 2008)
- Mission and Instrument Concept Update
 - XMS Instrument Design Lab (IDL) study May 2008 ✓Complete
 - Observatory Mission Design Lab Jul 2008 ✓Complete
 - SXT Flight Mirror Assembly (FMA) Jul thru Oct 2008
 - Mission study in ESA CDF Oct/Nov 2008
 - Conduct supporting technical analyses, refinement, etc. Sept thru Dec 2008
 - Update/complete all information for decadal (risk assessment operations, etc.) — Dec 2008/Jan 2009
- Schedule
 - Update FMA Schedule (mission development critical path) Oct thru Dec 2008
 - Update instrument, S/C, and overall mission schedules Oct 2008 thru Jan 2009
- Costs
 - Generate 70% confidence cost estimates Aug 2008 thru Jan 2009
- Technology Demo's
 - Define plans/schedule to achieve required mission performance Oct thru Dec 2008
 - Complete demonstrations December 2008 thru June 2009