

International X-ray Observatory (IXO)

The International X-ray Observatory (IXO) Mission Configuration

Nicholas E. White¹, Arvind N. Parmar², Hideyo Kunieda³, for the International X-ray Observatory Team ¹NASA/GSFC, ²ESA/ESTEC, Netherlands, ³Nagoya University, Japan

> The IXO is an inter-agency project with participation from ESA, JAXA, and NASA. The IXO will be a major new astronomical space based facility in the 2020 timeframe to address three timely, high priority science topics:

1) Black Holes and Matter under Extreme Conditions

- 2) Galaxy Formation, Galaxy Clusters, and Cosmic Feedback
- 3) Life Cycles of Matter and Energy

To address these topics the mission will provide a factor of 10 gain in telescope aperture with an effective area of 3 sq m at 1 keV and 5 arc sec angular resolution. The next generation instruments are a X-ray Micro-calorimeter Spectrometer (XMS), Wide Field Imager (WFI) and Hard X-ray Imager (HXI), a X-ray Grating Spectrometer (XGS), a High Time Resolution Spectrometer (HTRS) and an X-ray Polarimeter (XPOL). This presentation summarizes the mission implementation based on NASA, ESA, and JAXA design studies.

IXO will bring a factor of 10 gain in telescope aperture combined with next generation instrument technology to realize a quantum leap in capability

NASA Project Manager: Jean Grady ESA Study Manager: Philipe Gondoin JAXA Study Manager: Tadayasu Dotani

Key IXO Performance Requirements **Mirror Effective** Black hole evolution, large scale structure, 3 m² @1.25 keV cosmic feedback, EOS Area 0.65 m² @ 6 keV with a goal of 1 m² Strong gravity, EOS 150 cm^2 @ 30 keV with a goal of 350 cm² Cosmic acceleration, strong gravity Black Hole evolution, $\Delta E = 2.5 \text{ eV}$ within 2 x 2 arc min (0.3 – 7 keV). Spectral $\Delta E = 10 \text{ eV}$ within 5 x 5 arc min (0.3 - 7 keV) Resolution Large scale structure $\Delta E < 150 \text{ eV}$ @ 6 keV within 18 arc min diameter (0.1 - 15 keV)

		E/ΔE = 3000 from 0.3–1 keV with an area of 1,000 cm ² for point sources ΔE = 1 keV within 8 x 8 arc min (10 – 40 keV)	Missing baryons using tens of background AGN		
	Mirror Angular Resolution	≤5 arc sec HPD (0.1 – 7 keV) ≤30 arc sec HPD (7 - 40 keV) with a goal of 5 arc sec	Large scale structure, cosmic feedback, black hole evolution, missing baryons Black hole evolution		
	Count Rate	1 Crab with >90% throughput. ΔE < 200 eV (0.1 – 15 keV)	Strong gravity, EOS		
	Polarimetry	1% MDP at 3σ confidence on 1 mCrab in 100 ksec (2 - 6 keV)	AGN geometry, strong gravity		
	Astrometry	1 arcsec at 3σ confidence	Black hole evolution		
	Absolute Timing	50 μsec	Neutron star studies		

IXO Launch, Orbit, and Mission Life Launch on an Atlas V 551 or Ariane V in 2020 Direct launch into an 800,000 km semi-major axis L2 orbit 5 year required mission life, consumables for 10 year goal

NASA Study

- On-Axis Instruments with pre-amp electronics mount on Moveable Instrument Platform
 - Focus adjust mechanisms on each instrument for initial adjustment on-orbit
- XGS CCD mounts to X-Y Translation Stage on the Fixed Instrument Platform
- Provides adjustable interface to Focus, Rowland circle, and baffle
- Main instrument electronics mount to under side of Fixed Platform
- Heat Pipes transfer heat between electronics and radiators, both on Moveable **Instrument Platform and on Fixed Instrument Platform**
- The MIP Rotation Stage provides ~90 degrees of rotation with four instrument stops (HTRS, WFI/HXI, XMS, XPOL) and is failure tolerant

Four instrument are accommodated On moveable instrument platform, with grating CCD fixed on fixed instrument platform

Mirrors	Estimate	Cont	Allocation	
Flight Mirror Assembly	1748	30%	2273	
Increase Hard X-ray Response	53	30%	69	
Mirrors Total	1801		2342	
Payload	Estimate	Cont.	Allocation	
X-ray Microcalorimeter Spectrometer	257	30%	334	1
Wide Field Imager	90	30%	117	
X-ray Grating Spectrometer	64	30%	83	
HXI	31	30%	40	
XPOL	15	30%	20	
HTRS	31	30%	40	
Payload Accommodations	105	30%	136	
Payload Total	592		770	
Subsystems	Estimate	Cont.	Allocation	
Avionics	66	30%	86	
Communications	42	30%	55	
Attitude Control	88	30%	115	30% Continger
Structure and Mechanisms	1162	30%	1510	
Power	112	30%	146	
Propulsion (dry)	52	30%	68	
Thermal	254	30%	330	
Harness	283	30%	368	
Subsystems Total	2061		2679	J
Observatory	Estimate	Cont.	Allocation	
Science Payload Total	2394	30%	3112	
Bus Total	2061	30%	2679	
Observatory On Orbit Dry Mass	4454	30%	5791	
Separation System LV Side	272	9%	300	
Observatory Launched Dry Mass	4727		6091	
Propellant Mass (10 yrs)			225	
Observatory Wet Launch Mass			6315	
Margin				
Atlas V EE4 Throw Mass (C2 OE)			6425	
Atlas v 551 Throw Mass (C3=-0.5)				
Margin			110	

NASA and ESA mission studies demonstrate that the mission is feasible with no technical challenges The two separate and independent studies result in very similar implementation approaches

Deployed IXO Configuration

Stowed IXO Configuration

